Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Chem Commun (Camb) ; 60(38): 5062-5065, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38634835

RESUMEN

This study introduces a paradigm-shifting approach to optimize mitochondrial targeting. Employing a new fluorescent probe strategy, we unravel a combined influence of both Nernst potential (Ψ) and partitioning (P) contributions. Through the synthesis of new benz[e]indolinium-derived probes, our findings redefine the landscape of mitochondrial localization by optimizing the efficacy of mitochondrial probe retention in primary cortical neurons undergoing normoxia and oxygen-glucose deprivation. This methodology not only advances our understanding of subcellular dynamics, but also holds promise for transformative applications in biomedical research and therapeutic development.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Mitocondrias/metabolismo , Animales , Neuronas/metabolismo , Estructura Molecular , Imagen Óptica , Indoles/química
2.
STAR Protoc ; 4(4): 102593, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37738115

RESUMEN

Low and persistent levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA/protein/virus can be detected in clinical samples months after infection, possibly related to the emergence of SARS-CoV-2 variants or development of long coronavirus disease. Here, we present a protocol to detect low levels of viral RNA together with protein using flow cytometry and microscopy. We describe steps for cell infection with SARS-CoV-2 and quantification by fluorescence in situ hybridization-flow cytometry. We then detail procedures for visualization using immunolabeling and RNAscope. This approach is directly applicable to clinical samples. For complete details on the use and execution of this protocol, please refer to Zhu et al. (2022).1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Hibridación Fluorescente in Situ , ARN Viral/genética
3.
Cell Death Discov ; 9(1): 272, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507361

RESUMEN

Neural progenitor cells (NPCs) of the subventricular zone proliferate in response to ischemic stroke in the adult mouse brain. Newly generated cells have been considered to influence recovery following a stroke. However, the mechanism underlying such protection is a matter of active study since it has been thought that proliferating NPCs mediate their protective effects by secreting soluble factors that promote recovery rather than neuronal replacement in the ischemic penumbra. We tested the hypothesis that this mechanism is mediated by the secretion of multimolecular complexes in extracellular vesicles (EVs). We found that the molecular influence of oxygen and glucose-deprived (OGD) NPCs-derived EVs is very limited in improving overt neurological alterations caused by stroke compared to our recently reported astrocyte-derived EVs. However, when we inhibited the ischemia-triggered proliferation of NPCs with the chronic administration of the DNA synthesis inhibitor Ara-C, the effect of NPC-derived EVs became evident, suggesting that the endogenous protection exerted by the proliferation of NPC is mainly carried out through a mechanism that involves the intercellular communication mediated by EVs. We analyzed the proteomic content of NPC-derived EVs cargo with label-free relative abundance mass spectrometry and identified several molecular mediators of neuronal recovery within these vesicles. Our findings indicate that NPC-derived EVs are protective against the ischemic cascade activated by stroke and, thus, hold significant therapeutic potential.

5.
Environ Res ; 228: 115869, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37044166

RESUMEN

Ciguatoxins (CTXs) are marine neurotoxins that cause ciguatera poisoning (CP), mainly through the consumption of fish. The distribution of CTXs in fish is known to be unequal. Studies have shown that viscera accumulate more toxins than muscle, but little has been conducted on toxicity distribution in the flesh, which is the main edible part of fish, and the caudal muscle is also most commonly targeted for the monitoring of CTXs in the Canary Islands. At present, whether this sample is representative of the toxicity of an individual is undisclosed. This study aims to assess the distribution of CTXs in fish, considering different muscle samples, the liver, and gonads. To this end, tissues from four amberjacks (Seriola spp.) and four dusky groupers (Epinephelus marginatus), over 16.5 kg and captured in the Canary Islands, were analyzed by neuroblastoma-2a cell-based assay. Flesh samples were collected from the extraocular region (EM), head (HM), and different areas from the fillet (A-D). In the amberjack, the EM was the most toxic muscle (1.510 CTX1B Eq·g-1), followed by far for the caudal section of the fillet (D) (0.906 CTX1B Eq·g-1). In the dusky grouper flesh samples, D and EM showed the highest toxicity (0.279 and 0.273 CTX1B Eq·g-1). In both species, HM was one of the least toxic samples (0.421 and 0.166 CTX1B Eq·g-1). The liver stood out for its high CTX concentration (3.643 and 2.718 CTX1B Eq·g-1), as were the gonads (1.620 and 0.992 CTX1B Eq·g-1). According to these results, the caudal muscle next to the tail is a reliable part for use in determining the toxicity of fish flesh to guarantee its safe consumption. Additionally, the analysis of the liver and gonads could provide further information on doubtful specimens, and be used for CTX monitoring in areas with an unknown prevalence of ciguatera.


Asunto(s)
Lubina , Intoxicación por Ciguatera , Ciguatoxinas , Animales , Ciguatoxinas/toxicidad , Ciguatoxinas/análisis , Intoxicación por Ciguatera/epidemiología , Peces , Alimentos Marinos/análisis , Hígado/química
6.
Animals (Basel) ; 13(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36899810

RESUMEN

Previous studies have demonstrated that the strains Enterococcus gallinarum L1, Vagococcus fluvialis L21 and Lactobacillus plantarum CLFP3 are probiotics against vibriosis or lactococosis in sea bass or rainbow trout. In this study, the utility of these bacterial strains in the control of saprolegniosis was evaluated. For this purpose, both in vitro inhibition studies and competition for binding sites against Saprolegnia parasitica and in vivo tests with experimentally infected rainbow trout were carried out. In the in vitro tests, the three isolates showed inhibitory activity upon mycelium growth and cyst germination and reduced the adhesion of cysts to cutaneous mucus; however, this effect depended on the number of bacteria used and the incubation time. In the in vivo test, the bacteria were administered orally at 108 CFU g-1 in the feed or at 106 CFU ml-1 in the tank water for 14 days. None of the three bacteria showed protection against S. parasitica infection either through water or feed, and the cumulative mortality reached 100% within 14 days post infection. The obtained results show that the use of an effective probiotic against a certain disease in a host may not be effective against another pathogen or in another host and that the results obtained in vitro may not always predict the effects when used in vivo.

7.
Eur J Med Chem ; 249: 115152, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36724633

RESUMEN

COVID-19 is a complex disease with short-term and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. As many drugs targeting single targets showed only limited effectiveness against COVID-19, here, we aimed to explore a multi-target strategy. We synthesized a focused compound library based on C2-substituted indolealkylamines (tryptamines and 5-hydroxytryptamines) with activity for three potential COVID-19-related proteins, namely melatonin receptors, calmodulin and human angiotensin converting enzyme 2 (hACE2). Two molecules from the library, 5e and h, exhibit affinities in the high nanomolar range for melatonin receptors, inhibit the calmodulin-dependent calmodulin kinase II activity and the interaction of the SARS-CoV-2 Spike protein with hACE2 at micromolar concentrations. Both compounds inhibit SARS-CoV-2 entry into host cells and 5h decreases SARS-CoV-2 replication and MPro enzyme activity in addition. In conclusion, we provide a proof-of-concept for the successful design of multi-target compounds based on the tryptamine scaffold. Optimization of these preliminary hit compounds could potentially provide drug candidates to treat COVID-19 and other coronavirus diseases.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Calmodulina , Receptores de Melatonina
8.
J Physiol ; 601(9): 1655-1673, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36625071

RESUMEN

The Transient Receptor Potential Vanilloid 4 (TRPV4) channel has been shown to function in many physiological and pathophysiological processes. Despite abundant information on its importance in physiology, very few endogenous agonists for this channel have been described, and very few underlying mechanisms for its activation have been clarified. TRPV4 is expressed by several types of cells, such as vascular endothelial, and skin and lung epithelial cells, where it plays pivotal roles in their function. In the present study, we show that TRPV4 is activated by lysophosphatidic acid (LPA) in both endogenous and heterologous expression systems, pinpointing this molecule as one of the few known endogenous agonists for TRPV4. Importantly, LPA is a bioactive glycerophospholipid, relevant in several physiological conditions, including inflammation and vascular function, where TRPV4 has also been found to be essential. Here we also provide mechanistic details of the activation of TRPV4 by LPA and another glycerophospholipid, lysophosphatidylcholine (LPC), and show that LPA directly interacts with both the N- and C-terminal regions of TRPV4 to activate this channel. Moreover, we show that LPC activates TRPV4 by producing an open state with a different single-channel conductance to that observed with LPA. Our data suggest that the activation of TRPV4 can be finely tuned in response to different endogenous lipids, highlighting this phenomenon as a regulator of cell and organismal physiology. KEY POINTS: The Transient Receptor Potential Vaniloid (TRPV) 4 ion channel is a widely distributed protein with important roles in normal and disease physiology for which few endogenous ligands are known. TRPV4 is activated by a bioactive lipid, lysophosphatidic acid (LPA) 18:1, in a dose-dependent manner, in both a primary and a heterologous expression system. Activation of TRPV4 by LPA18:1 requires residues in the N- and C-termini of the ion channel. Single-channel recordings show that TRPV4 is activated with a decreased current amplitude (conductance) in the presence of lysophosphatidylcholine (LPC) 18:1, while LPA18:1 and GSK101 activate the channel with a larger single-channel amplitude. Distinct single-channel amplitudes produced by LPA18:1 and LPC18:1 could differentially modulate the responses of the cells expressing TRPV4 under different physiological conditions.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Canales Catiónicos TRPV/metabolismo , Lisofosfatidilcolinas/farmacología , Lisofosfolípidos/farmacología
9.
Animals (Basel) ; 12(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36552420

RESUMEN

Ciguatera poisoning (CP) is a foodborne disease known for centuries; however, little research has been conducted on the effects of ciguatoxins (CTXs) on fish metabolism. The main objective of this study was to assess different hepatic compounds observed in goldfish (Carassius auratus) fed C-CTX1 using nuclear magnetic resonance (NMR)-based metabolomics. Thirteen goldfish were treated with C-CTX1-enriched flesh and sampled on days 1, 8, 15, 29, 36, and 43. On day 43, two individuals, referred to as 'Detox', were isolated until days 102 and 121 to evaluate the possible recovery after returning to a commercial feed. At each sampling, hepatic tissue was weighed to calculate the hepatosomatic index (HSI) and analyzed for the metabolomics study; animals fed toxic flesh showed a higher HSI, even greater in the 'Detox' individuals. Furthermore, altered concentrations of alanine, lactate, taurine, glucose, and glycogen were observed in animals with the toxic diet. These disturbances could be related to an increase in ammonium ion (NH4+) production. An increase in ammonia (NH3) concentration in water was observed in the aquarium where the fish ingested toxic meat compared to the non-toxic aquarium. All these changes may be rationalized by the relationship between CTXs and the glucose-alanine cycle.

10.
Nat Commun ; 13(1): 5956, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220814

RESUMEN

HIV-1 eradication is hindered by viral persistence in cell reservoirs, established not only in circulatory CD4+T-cells but also in tissue-resident macrophages. The nature of macrophage reservoirs and mechanisms of persistence despite combined anti-retroviral therapy (cART) remain unclear. Using genital mucosa from cART-suppressed HIV-1-infected individuals, we evaluated the implication of macrophage immunometabolic pathways in HIV-1 persistence. We demonstrate that ex vivo, macrophage tissue reservoirs contain transcriptionally active HIV-1 and viral particles accumulated in virus-containing compartments, and harbor an inflammatory IL-1R+S100A8+MMP7+M4-phenotype prone to glycolysis. Reactivation of infectious virus production and release from these reservoirs in vitro are induced by the alarmin S100A8, an endogenous factor produced by M4-macrophages and implicated in "sterile" inflammation. This process metabolically depends on glycolysis. Altogether, inflammatory M4-macrophages form a major tissue reservoir of replication-competent HIV-1, which reactivate viral production upon autocrine/paracrine S100A8-mediated glycolytic stimulation. This HIV-1 persistence pathway needs to be targeted in future HIV eradication strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Alarminas , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos , Calgranulina A , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Humanos , Macrófagos , Metaloproteinasa 7 de la Matriz/farmacología , Metaloproteinasa 7 de la Matriz/uso terapéutico , Latencia del Virus , Replicación Viral
11.
Front Immunol ; 13: 842468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248831

RESUMEN

The role of the mucosal pulmonary antibody response in coronavirus disease 2019 (COVID-19) outcome remains unclear. Here, we found that in bronchoalveolar lavage (BAL) samples from 48 patients with severe COVID-19-infected with the ancestral Wuhan virus, mucosal IgG and IgA specific for S1, receptor-binding domain (RBD), S2, and nucleocapsid protein (NP) emerged in BAL containing viruses early in infection and persist after virus elimination, with more IgA than IgG for all antigens tested. Furthermore, spike-IgA and spike-IgG immune complexes were detected in BAL, especially when the lung virus has been cleared. BAL IgG and IgA recognized the four main RBD variants. BAL neutralizing titers were higher early in COVID-19 when virus replicates in the lung than later in infection after viral clearance. Patients with fatal COVID-19, in contrast to survivors, developed higher levels of mucosal spike-specific IgA than IgG but lost neutralizing activities over time and had reduced IL-1ß in the lung. Altogether, mucosal spike and NP-specific IgG and S1-specific IgA persisting after lung severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance and low pulmonary IL-1ß correlate with COVID-19 fatal outcome. Thus, mucosal SARS-CoV-2-specific antibodies may have adverse functions in addition to protective neutralization. Highlights: Mucosal pulmonary antibody response in COVID-19 outcome remains unclear. We show that in severe COVID-19 patients, mucosal pulmonary non-neutralizing SARS-CoV-2 IgA persit after viral clearance in the lung. Furthermore, low lung IL-1ß correlate with fatal COVID-19. Altogether, mucosal IgA may exert harmful functions beside protective neutralization.


Asunto(s)
COVID-19 , Interleucina-1beta/metabolismo , SARS-CoV-2 , Anticuerpos Antivirales , Complejo Antígeno-Anticuerpo , Estudios Transversales , Humanos , Inmunoglobulina A , Inmunoglobulina G , Pulmón , Proteínas de la Nucleocápside , Glicoproteína de la Espiga del Coronavirus
12.
Acta Vet Hung ; 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35895532

RESUMEN

Yersiniosis, caused by the fish pathogen Yersinia ruckeri, is a serious bacterial septicaemia affecting mainly salmonids worldwide. The acute infection may result in high mortality without apparent external disease signs, while the chronic one causes moderate to considerable mortality. Survivors of yersiniosis outbreaks become carriers. Y. ruckeri is able to adhere to, and to invade, phagocytic and non-phagocytic fish cells by using unknown molecular mechanisms. The aim of this study was to describe the kinetics of cell invasion by Y. ruckeri serotype O1 biotype 1 in a fish cell line (RTG-2) originating from rainbow trout gonads. The efficiency of invasion by Y. ruckeri was found to be temperature dependent, having a maximum at 20 °C. The bacterium was able to survive up to 96 h postinfection. The incubation of the cells at 4 °C and the pre-incubation of the bacteria with sugars or heat-inactivated antiserum significantly decreased the efficiency of invasion or even completely prevented the invasion of RTG-2 cells. These findings indicate that Y. ruckeri is capable of adhering to, entering and surviving within non-phagocytic cells, and that the intracellular environment may constitute a suitable niche for this pathogen that can favour the spread of infection and/or the maintenance of a carrier state of fish.

13.
Cell Mol Life Sci ; 79(7): 365, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35708858

RESUMEN

SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precursors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened differentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-CoV-2  alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.


Asunto(s)
COVID-19 , Trombosis , Plaquetas , Humanos , Pulmón , Megacariocitos , Proteínas de la Membrana , Proteínas de Unión al ARN , SARS-CoV-2
14.
Comp Immunol Microbiol Infect Dis ; 84: 101792, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35325686

RESUMEN

Stray cat populations can represent a significant threat of the transmission of zoonotic diseases such as salmonellosis. The objective of this study was to assess Salmonella carriage by free-living cats in Gran Canaria island and the Salmonella serovars involved, in order to inform to those responsible for the colonies about the possible risk factors. One hundred rectal swabs of feral cats were taken. Salmonella strains were serotyped in accordance with Kauffman-White-Le-Minor technique. Of a total of 100 animals under study, 19% were found to be positive to Salmonella spp. This is the first report that described the zoonotic serovars S. Nima, S. Bredeney, S. Grancanaria and S. Kottbus in cats. The present study demonstrates that feral cats may represent a source of risk for the spread of different Salmonella zoonotic serovars. It has been reported that there is a certain correlation between Salmonella isolates from pets and wild animals. Further studies are needed from other animal species and environmental sources to make this correlation.


Asunto(s)
Enfermedades de los Gatos , Salmonelosis Animal , Salmonella enterica , Animales , Animales Salvajes , Enfermedades de los Gatos/epidemiología , Gatos , Salud Pública , Salmonella , Salmonelosis Animal/epidemiología , Serogrupo , Serotipificación/veterinaria
15.
Toxins (Basel) ; 14(1)2022 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-35051023

RESUMEN

The Canary Islands are a ciguatoxin (CTX) hotspot with an established official monitoring for the detection of CTX in fish flesh from the authorised points of first sale. Fish caught by recreational fishermen are not officially tested and the consumption of toxic viscera or flesh could lead to ciguatera poisoning (CP). The objectives of this study were to determine the presence of CTX-like toxicity in relevant species from this archipelago, compare CTX levels in liver and flesh and examine possible factors involved in their toxicity. Sixty amberjack (Seriola spp.), 27 dusky grouper (Epinephelus marginatus), 11 black moray eels (Muraena helena) and 11 common two-banded seabream (Diplodus vulgaris) were analysed by cell-based assay (CBA) and Caribbean ciguatoxin-1 (C-CTX1) was detected by liquid chromatography mass spectrometry (LC-MS/MS) in all these species. Most of the liver displayed higher CTX levels than flesh and even individuals without detectable CTX in flesh exhibited hepatic toxicity. Black moray eels stand out for the large difference between CTX concentration in both tissues. None of the specimens with non-toxic liver showed toxicity in flesh. This is the first evidence of the presence of C-CTX1 in the common two-banded seabream and the first report of toxicity comparison between liver and muscle from relevant fish species captured in the Canary Islands.


Asunto(s)
Ciguatoxinas/análisis , Peces , Contaminación de Alimentos/análisis , Hígado/química , Músculo Esquelético/química , Alimentos Marinos/análisis , Animales , Cromatografía Liquida , España , Especificidad de la Especie , Espectrometría de Masas en Tándem
16.
Methods Mol Biol ; 2407: 189-204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985666

RESUMEN

HIV reservoirs in tissues are poorly understood and their establishment largely depends on the nature of tissues that interact with the virus. In this chapter, we will describe in vitro and ex vivo models of human urethral mucosal macrophages used in the investigation of the establishment and maintenance of tissue HIV reservoirs. In addition, we will describe how macrophage latent HIV infection was assessed in these models by reverting a nonproductive state of infection back into a productive state. Consequently, infectious particles are released to the macrophage extracellular milieu and detected by adapted viral outgrowth assays. Altogether, these approaches provide invaluable tools for the investigation on tissue-specific pathways that HIV-1 employs to reach host cells and form reservoirs in the genital mucosa. These models will contribute to the development of an efficient and targeted prophylaxis against HIV and of a HIV cure.


Asunto(s)
Infecciones por VIH , Latencia del Virus , Linfocitos T CD4-Positivos , Genitales Masculinos , Humanos , Masculino , Modelos Teóricos , Células Mieloides
17.
J Pineal Res ; 72(1): e12772, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34586649

RESUMEN

As the COVID-19 pandemic grows, several therapeutic candidates are being tested or undergoing clinical trials. Although prophylactic vaccination against SARS-CoV-2 infection has been shown to be effective, no definitive treatment exists to date in the event of infection. The rapid spread of infection by SARS-CoV-2 and its variants fully warrants the continued evaluation of drug treatments for COVID-19, especially in the context of repurposing of already available and safe drugs. Here, we explored the therapeutic potential of melatonin and melatonergic compounds in attenuating COVID-19 pathogenesis in mice expressing human ACE2 receptor (K18-hACE2), strongly susceptible to SARS-CoV-2 infection. Daily administration of melatonin, agomelatine, or ramelteon delays the occurrence of severe clinical outcome with improvement of survival, especially with high melatonin dose. Although no changes in most lung inflammatory cytokines are observed, treatment with melatonergic compounds limits the exacerbated local lung production of type I and type III interferons, which is likely associated with the observed improved symptoms in treated mice. The promising results from this preclinical study should encourage studies examining the benefits of repurposing melatonergic drugs to treat COVID-19 and related diseases in humans.


Asunto(s)
Acetamidas/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19 , Indenos/farmacología , Melatonina/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Carga Viral/efectos de los fármacos
18.
Animals (Basel) ; 11(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34359157

RESUMEN

On intensive fish farms, 10% of the population dies exclusively from pathogens, and Photobacterium damselae subsp. Piscicida (Ph. damselae subsp. Piscicida), the bacteria causing pasteurellosis in marine aquaculture, is one of the major pathogens involved. The objective of this study was to obtain new probiotic strains against pasteurellosis in order to limit the use of chemotherapy, avoiding the environmental repercussions generated by the abusive use of these products. In this study, 122 strains were isolated from the gills and intestines of different marine fish species and were later evaluated in vitro to demonstrate the production of antagonistic effects, the production of antibacterial substances, adhesion and growth to mucus, resistance to bile and resistance to pH gradients, as well as its harmlessness and the dynamic of expression of immune-related genes by real-time PCR after administration of the potential probiotic in the fish diet. Only 1/122 strains showed excellent results to be considered as a potential probiotic strain and continue its characterization against Ph. damselae subsp. piscicida to determine its protective effect and elucidating in future studies its use as a possible probiotic strain for marine aquaculture.

20.
Animals (Basel) ; 11(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477985

RESUMEN

Ciguatoxins (CTXs) are produced by dinoflagellates usually present in tropical and subtropical waters. These toxins are bioaccumulated and transformed in fish causing ciguatera fish poisoning (CFP) in humans. Few trials have been performed to understand how CTXs are incorporated into fish. This study developed an experimental model of goldfish (Carassius auratus) fed flesh contaminated with Caribbean ciguatoxin (C-CTX1). Fourteen goldfish were fed 0.014 ng CTX1B (Eq. g-1 of body weight) daily, and control goldfish received non-toxic flesh. CTX presence was determined by a cell-based assay on days 1, 8, 15, 29, 36, 43, and 84. Toxicity was detected in muscle from the second sampling and then seemed to stabilize at ~0.03 ng CTX1B Eq. g-1. After two weeks, all experimental goldfish developed lethargy and loss of brightness, but only two of them displayed erratic swimming and jerking movements near the sixth sampling. One of these fish had its toxic diet replaced by commercial food for 60 more days; the fish showed recovery signs within the first weeks and no CTX activity was detected. These results indicate that C-CTX1 could accumulate in goldfish muscle tissue and produce toxic symptoms, but also remarked on the detoxification and recovery capacity of this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...