Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 18: 3007-3020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37312931

RESUMEN

Background: Photodynamic inactivation (PDI) is an attractive alternative to treat Candida albicans infections, especially considering the spread of resistant strains. The combination of the photophysical advantages of Zn(II) porphyrins (ZnPs) and the plasmonic effect of silver nanoparticles (AgNPs) has the potential to further improve PDI. Here, we propose the novel association of polyvinylpyrrolidone (PVP) coated AgNPs with the cationic ZnPs Zn(II) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin or Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin to photoinactivate C. albicans. Methods: AgNPs stabilized with PVP were chosen to allow for (i) overlap between the NP extinction and absorption spectra of ZnPs and (ii) favor AgNPs-ZnPs interaction; prerequisites for exploring the plasmonic effect. Optical and zeta potential (ζ) characterizations were performed, and reactive oxygen species (ROS) generation was also evaluated. Yeasts were incubated with individual ZnPs or their respective AgNPs-ZnPs systems, at various ZnP concentrations and two proportions of AgNPs, then irradiated with a blue LED. Interactions between yeasts and the systems (ZnP alone or AgNPs-ZnPs) were evaluated by fluorescence microscopy. Results: Subtle spectroscopic changes were observed for ZnPs after association with AgNPs, and the ζ analyses confirmed AgNPs-ZnPs interaction. PDI using ZnP-hexyl (0.8 µM) and ZnP-ethyl (5.0 µM) promoted a 3 and 2 log10 reduction of yeasts, respectively. On the other hand, AgNPs-ZnP-hexyl (0.2 µM) and AgNPs-ZnP-ethyl (0.6 µM) systems led to complete fungal eradication under the same PDI parameters and lower porphyrin concentrations. Increased ROS levels and enhanced interaction of yeasts with AgNPs-ZnPs were observed, when compared with ZnPs alone. Conclusion: We applied a facile synthesis of AgNPs which boosted ZnP efficiency. We hypothesize that the plasmonic effect combined with the greater interaction between cells and AgNPs-ZnPs systems resulted in an efficient and improved fungal inactivation. This study provides insight into the application of AgNPs in PDI and helps diversify our antifungal arsenal, encouraging further developments toward inactivation of resistant Candida spp.


Asunto(s)
Nanopartículas del Metal , Porfirinas , Candida albicans , Plata/farmacología , Especies Reactivas de Oxígeno , Povidona , Zinc/farmacología
2.
J Fungi (Basel) ; 8(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736039

RESUMEN

Candida albicans is the main cause of superficial candidiasis. While the antifungals available are defied by biofilm formation and resistance emergence, antimicrobial photodynamic inactivation (aPDI) arises as an alternative antifungal therapy. The tetracationic metalloporphyrin Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (ZnTnHex-2-PyP4+) has high photoefficiency and improved cellular interactions. We investigated the ZnTnHex-2-PyP4+ as a photosensitizer (PS) to photoinactivate yeasts and biofilms of C. albicans strains (ATCC 10231 and ATCC 90028) using a blue light-emitting diode. The photoinactivation of yeasts was evaluated by quantifying the colony forming units. The aPDI of ATCC 90028 biofilms was assessed by the MTT assay, propidium iodide (PI) labeling, and scanning electron microscopy. Mammalian cytotoxicity was investigated in Vero cells using MTT assay. The aPDI (4.3 J/cm2) promoted eradication of yeasts at 0.8 and 1.5 µM of PS for ATCC 10231 and ATCC 90028, respectively. At 0.8 µM and same light dose, aPDI-treated biofilms showed intense PI labeling, about 89% decrease in the cell viability, and structural alterations with reduced hyphae. No considerable toxicity was observed in mammalian cells. Our results introduce the ZnTnHex-2-PyP4+ as a promising PS to photoinactivate both yeasts and biofilms of C. albicans, stimulating studies with other Candida species and resistant isolates.

3.
Oxid Med Cell Longev ; 2021: 7003861, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912497

RESUMEN

Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE-2-PyPCl5, BMX-010, and AEOL10113) is among the most studied superoxide dismutase (SOD) mimics and redox-active therapeutics, being currently tested as a drug candidate in a phase II clinical trial on atopic dermatitis and itch. The thermal stability of active pharmaceutical ingredients (API) is useful for estimating the expiration date and shelf life of pharmaceutical products under various storage and handling conditions. The thermal decomposition and kinetic parameters of MnTE-2-PyPCl5 were determined by thermogravimetry (TG) under nonisothermal and isothermal conditions. The first thermal degradation pathway affecting Mn-porphyrin structural integrity and, thus, activity and bioavailability was associated with loss of ethyl chloride via N-dealkylation reaction. The thermal stability kinetics of the N-dealkylation process leading to MnTE-2-PyPCl5 decomposition was investigated by using isoconversional models and artificial neural network. The new multilayer perceptron (MLP) artificial neural network approach allowed the simultaneous study of ten solid-state kinetic models and showed that MnTE-2-PyPCl5 degradation is better explained by a combination of various mechanisms, with major contributions from the contraction models R1 and R2. The calculated activation energy values from isothermal and nonisothermal data were about 90 kJ mol-1 on average and agreed with one another. According to the R1 modelling of the isothermal decomposition data, the estimated shelf life value for 10% decomposition (t 90%) of MnTE-2-PyPCl5 at 25°C was approximately 17 years, which is consistent with the high solid-state stability of the compound. These results represent the first study on the solid-state decomposition kinetics of Mn(III) 2-N-alkylpyridylporphyrins, contributing to the development of this class of redox-active therapeutics and SOD mimics and providing supporting data to protocols on purification, handling, storage, formulation, expiration date, and general use of these compounds.


Asunto(s)
Biomimética/estadística & datos numéricos , Estabilidad de Medicamentos , Metaloporfirinas/química , Superóxido Dismutasa/química , Temperatura , Cinética , Oxidación-Reducción
4.
Biochim Biophys Acta Gen Subj ; 1865(7): 129897, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33811942

RESUMEN

BACKGROUND: Photodynamic inactivation (PDI) is emerging as a promising alternative for cutaneous leishmaniasis (CL). The chemotherapy currently used presents adverse effects and cases of drug resistance have been reported. ZnTnHex-2-PyP4+ is a porphyrin with a high potential as a photosensitizer (PS) for PDI, due to its photophysical properties, structural stability, and cationic/amphiphilic character that can enhance interaction with cells. This study aimed to investigate the photodynamic effects mediated by ZnTnHex-2-PyP4+ on Leishmania parasites. METHODS: ZnTnHex-2-PyP4+ stability was evaluated using accelerated solvolysis conditions. The photodynamic action on promastigotes was assessed by (i) viability assays, (ii) mitochondrial membrane potential evaluation, and (iii) morphological analysis. The PS-promastigote interaction was studied. PDI on amastigotes and the cytotoxicity on macrophages were also analyzed. RESULTS: ZnTnHex-2-PyP4+, under submicromolar concentration, led to immediate inactivation of more than 95% of promastigotes. PDI promoted intense mitochondrial depolarization, loss of the fusiform shape, and plasma membrane wrinkling in promastigotes. Fluorescence microscopy revealed a punctate PS labeling in the parasite cytoplasm. PDI also led to reductions of ca. 64% in the number of amastigotes/macrophage and 70% in the infection index after a single treatment session. No noteworthy toxicity was observed on mammalian cells. CONCLUSIONS: ZnTnHex-2-PyP4+ is stable against demetallation and more efficient as PS than the ethyl analogue ZnTE-2-PyP4+, indicating readiness for evaluation in in vivo studies as an alternative approach to CL. GENERAL SIGNIFICANCE: This report highlighted promising photodynamic effects mediated by ZnTnHex-2-PyP4+ on Leishmania parasites, opening up perspectives for applications in CL pre-clinical assays and PDI of other microorganisms.


Asunto(s)
Leishmania/efectos de los fármacos , Macrófagos/efectos de los fármacos , Metaloporfirinas/farmacología , Fotoquimioterapia/métodos , Zinc/química , Animales , Femenino , Leishmania/crecimiento & desarrollo , Metaloporfirinas/química , Ratones , Ratones Endogámicos BALB C
5.
Dalton Trans ; 49(45): 16404-16418, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32633298

RESUMEN

Two classes of heterogenized biomimetic catalysts were prepared and characterized for hydrocarbon oxidations: (1) by covalent anchorage of the three Mn(iii) meso-tetrakis(2-, 3-, or 4-pyridyl)porphyrin isomers by in situ alkylation with chloropropyl-functionalized silica gel (Sil-Cl) to yield Sil-Cl/MnPY (Y = 1, 2, 3) materials, and (2) by electrostatic immobilization of the three Mn(iii) meso-tetrakis(N-methylpyridinium-2, 3, or 4-yl)porphyrin isomers (MnPY, Y = 4, 5, 6) on non-modified silica gel (SiO2) to yield SiO2/MnPY (Y = 4, 5, 6) materials. Silica gel used was of column chromatography grade and Mn porphyrin loadings were deliberately kept at a low level (0.3% w/w). These resulting materials were explored as catalysts for iodosylbenzene (PhIO) oxidation of cyclohexane, n-heptane, and adamantane to yield the corresponding alcohols and ketones; the oxidation of cyclohexanol to cyclohexanone was also investigated. The heterogenized catalysts exhibited higher efficiency and selectivity than the corresponding Mn porphyrins under homogeneous conditions. Recycling studies were consistent with low leaching/destruction of the supported Mn porphyrins. The Sil-Cl/MnPY catalysts were more efficient and more selective than SiO2/MnPY ones; alcohol selectivity may be associated with hydrophobic silica surface modification reminiscent of biological cytochrome P450 oxidations. The use of widespread, column chromatography, amorphous silica yielded Sil-Cl/MnPY or SiO2/MnPY catalysts considerably more efficient than the corresponding, previously reported materials with mesoporous Santa Barbara Amorphous No 15 (SBA-15) silica. Among the materials studied, in situ derivatization of Mn(iii) 2-N-pyridylporphyrin by covalent immobilization on Sil-Cl to yield Sil-Cl/MnP1 showed the best catalytic performance with high stability against oxidative destruction and reusability/recyclability.


Asunto(s)
Complejos de Coordinación/química , Hidrocarburos/química , Manganeso/química , Porfirinas/química , Dióxido de Silicio/química , Catálisis , Geles , Cinética , Oxidación-Reducción
6.
Antioxidants (Basel) ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492872

RESUMEN

Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, (H2O)MnTnHex-2-PyP5+ (MnHex) carrying long hexyl chains, is a lipophilic mimic of superoxide dismutase (SOD) and a redox-active drug candidate. MnHex crosses the blood-brain barrier, and improved neurologic outcome and decreased infarct size and inflammation in a rat middle cerebral artery occlusion (MCAO) ischemic stroke model. Yet, the dose and the therapeutic efficacy of Mn porphyrin were limited by an adverse effect of arterial hypotension. An equally lipophilic Fe analog, (OH)FeTnHex-2-PyP4+ (FeHex), is as redox-active and potent SOD mimic in vitro. With different coordination geometry of the metal site, FeHex has one hydroxo (OH) ligand (instead of water) bound to the Fe center in the axial position. It has ~2 orders of magnitude higher efficacy than MnHex in an SOD-deficient E. coli model of oxidative stress. In vivo, it does not cause arterial hypotension and is less toxic to mice. We thus evaluated FeHex versus MnHex in a rodent MCAO model. We first performed short- and long-term pharmacokinetics (PK) of both porphyrins in the plasma, brain, and liver of rats and mice. Given that damage to the brain during stroke occurs very rapidly, fast delivery of a sufficient dose of drug is important. Therefore, we aimed to demonstrate if, and how fast after reperfusion, Fe porphyrin reaches the brain relative to the Mn analog. A markedly different plasma half-life was found with FeHex (~23 h) than with MnHex (~1.4 h), which resulted in a more than 2-fold higher plasma exposure (AUC) in a 7-day twice-daily treatment of rats. The increased plasma half-life is explained by the much lower liver retention of FeHex than typically found in Mn analogs. In the brain, a 3-day mouse PK study showed similar levels of MnHex and FeHex. The same result was obtained in a 7-day rat PK study, despite the higher plasma exposure of FeHex. Importantly, in a short-term PK study with treatment starting 2 h post MCAO, both Fe- and Mn- analogs distributed at a higher level to the injured brain hemisphere, with a more pronounced effect observed with FeHex. While a 3-day mouse MCAO study suggested the efficacy of Fe porphyrin, in a 7-day rat MCAO study, Mn-, but not Fe porphyrin, was efficacious. The observed lack of FeHex efficacy was discussed in terms of significant differences in the chemistry of Fe vs the Mn center of metalloporphyrin; relative to MnHex, FeHex has the propensity for axial coordination, which in vivo would preclude the reactivity of the Fe center towards small reactive species.

7.
Oxid Med Cell Longev ; 2020: 4850697, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32273944

RESUMEN

BACKGROUND: Cardiomyopathies remain among the leading causes of death worldwide, despite all efforts and important advances in the development of cardiovascular therapeutics, demonstrating the need for new solutions. Herein, we describe the effects of the redox-active therapeutic Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, AEOL10113, BMX-010 (MnTE-2-PyP5+), on rat heart as an entry to new strategies to circumvent cardiomyopathies. METHODS: Wistar rats weighing 250-300 g were used in both in vitro and in vivo experiments, to analyze intracellular Ca2+ dynamics, L-type Ca2+ currents, Ca2+ spark frequency, intracellular reactive oxygen species (ROS) levels, and cardiomyocyte and cardiac contractility, in control and MnTE-2-PyP5+-treated cells, hearts, or animals. Cells and hearts were treated with 20 µM MnTE-2-PyP5+ and animals with 1 mg/kg, i.p. daily. Additionally, we performed electrocardiographic and echocardiographic analysis. RESULTS: Using isolated rat cardiomyocytes, we observed that MnTE-2-PyP5+ reduced intracellular Ca2+ transient amplitude, without altering cell contractility. Whereas MnTE-2-PyP5+ did not alter basal ROS levels, it was efficient in modulating cardiomyocyte redox state under stress conditions; MnTE-2-PyP5+ reduced Ca2+ spark frequency and increased sarcoplasmic reticulum (SR) Ca2+ load. Accordingly, analysis of isolated perfused rat hearts showed that MnTE-2-PyP5+ preserves cardiac function, increases SR Ca2+ load, and reduces arrhythmia index, indicating an antiarrhythmic effect. In vivo experiments showed that MnTE-2-PyP5+ treatment increased Ca2+ transient, preserved cardiac ejection fraction, and reduced arrhythmia index and duration. MnTE-2-PyP5+ was effective both to prevent and to treat cardiac arrhythmias. CONCLUSION: MnTE-2-PyP5+ prevents and treats cardiac arrhythmias in rats. In contrast to most antiarrhythmic drugs, MnTE-2-PyP5+ preserves cardiac contractile function, arising, thus, as a prospective therapeutic for improvement of cardiac arrhythmia treatment.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/prevención & control , Sistema Cardiovascular/efectos de los fármacos , Metaloporfirinas/uso terapéutico , Oxidación-Reducción/efectos de los fármacos , Animales , Masculino , Ratas , Ratas Wistar
8.
Antioxid Redox Signal ; 29(13): 1196-1214, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390861

RESUMEN

AIMS: We aim here to demonstrate that radiation (RT) enhances tumor sensitization by only those Mn complexes that are redox active and cycle with ascorbate (Asc), thereby producing H2O2 and utilizing it subsequently in protein S-glutathionylation in a glutathione peroxidase (GPx)-like manner. In turn, such compounds affect cellular redox environment, described by glutathione disulfide (GSSG)/glutathione (GSH) ratio, and tumor growth. To achieve our goal, we tested several Mn complexes of different chemical and physical properties in cellular and animal flank models of 4T1 breast cancer cell. Four other cancer cell lines were used to substantiate key findings. RESULTS: Joint administration of cationic Mn porphyrin (MnP)-based redox active compounds, MnTE-2-PyP5+ or MnTnBuOE-2-PyP5+ with RT and Asc contributes to high H2O2 production in cancer cells and tumor, which along with high MnP accumulation in cancer cells and tumor induces the largest suppression of cell viability and tumor growth, while increasing GSSG/GSH ratio and levels of total S-glutathionylated proteins. Redox-inert MnP, MnTBAP3- and two other different types of redox-active Mn complexes (EUK-8 and M40403) were neither efficacious in the cellular nor in the animal model. Such outcome is in accordance with their inability to catalyze Asc oxidation and mimic GPx. INNOVATION: We provided here the first evidence how structure-activity relationship between the catalytic potency and the redox properties of Mn complexes controls their ability to impact cellular redox environment and thus enhance the radiation and ascorbate-mediated tumor suppression. CONCLUSIONS: The interplay between the accumulation of cationic MnPs and their potency as catalysts for oxidation of Asc, protein cysteines, and GSH controls the magnitude of their anticancer therapeutic effects.


Asunto(s)
Antineoplásicos/farmacología , Ácido Ascórbico/metabolismo , Manganeso/farmacología , Estructuras Metalorgánicas/farmacología , Neoplasias/metabolismo , Neoplasias/radioterapia , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Manganeso/química , Estructuras Metalorgánicas/química , Ratones , Ratones Endogámicos BALB C , Neoplasias/patología , Oxidación-Reducción , Relación Estructura-Actividad
9.
Luminescence ; 32(7): 1227-1232, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28512775

RESUMEN

The quantification of zinc in over-the-counter drugs as commercial propolis extracts by molecular fluorescence technique using meso-tetrakis(4-carboxyphenyl)porphyrin (H2 TCPP4 ) was developed for the first time. The calibration curve is linear from 6.60 to 100 nmol L-1 of Zn2+ . The detection and quantification limits were 6.22 nmol L-1 and 19.0 nmol L-1 , respectively. The reproducibility and repeatability calculated as the percentage variation of slopes of seven calibration curves were 6.75% and 4.61%, respectively. Commercial propolis extract samples from four Brazilian states were analyzed and the results (0.329-0.797 mg/100 mL) obtained with this method are in good agreement with that obtained with the Atomic Absorption Spectroscopy (AAS) technique. The method is simple, fast, of low cost and allows the analysis of the samples without pretreatment. Moreover the major advantage is that Zn-porphyrin complex presents fluorescent characteristic promoting the selectivity and sensitivity of the method.


Asunto(s)
Própolis/análisis , Espectrometría de Fluorescencia/métodos , Zinc/análisis , Brasil , Calibración , Colorantes Fluorescentes/química , Mesoporfirinas/química , Porfirinas/química , Própolis/química , Reproducibilidad de los Resultados , Espectrofotometría Atómica/métodos , Espectrofotometría Ultravioleta
10.
J Inorg Biochem ; 169: 50-60, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28131001

RESUMEN

We disclose here the studies that preceded and guided the preparation of the metal-based, redox-active therapeutic Mn(III) meso-tetrakis(N-n-butoxyethylpyridyl)porphyrin, MnTnBuOE-2-PyP5+ (BMX-001), which is currently in Phase I/II Clinical Trials at Duke University (USA) as a radioprotector of normal tissues in cancer patients. N-substituted pyridylporphyrins are ligands for Mn(III) complexes that are among the most potent superoxide dismutase mimics thus far synthesized. To advance their design, thereby improving their physical and chemical properties and bioavailability/toxicity profiles, we undertook a systematic study on placing oxygen atoms into N-alkylpyridyl chains via alkoxyalkylation reaction. For the first time we show here the unforeseen structural rearrangement that happens during the alkoxyalkylation reaction by the corresponding tosylates. Comprehensive experimental and computational approaches were employed to solve the rearrangement mechanism involved in quaternization of pyridyl nitrogens, which, instead of a single product, led to a variety of mixed N-alkoxyalkylated and N-alkylated pyridylporphyrins. The rearrangement mechanism involves the formation of an intermediate alkyl oxonium cation in a chain-length-dependent manner, which subsequently drives differential kinetics and thermodynamics of competing N-alkoxyalkylation versus in situ N-alkylation. The use of alkoxyalkyl tosylates, of different length of alkyl fragments adjacent to oxygen atom, allowed us to identify the set of alkyl fragments that would result in the synthesis of a single compound of high purity and excellent therapeutic potential.


Asunto(s)
Manganeso/química , Metaloporfirinas/química , Porfirinas/química , Superóxido Dismutasa/química , Biomimética , Modelos Moleculares , Oxidación-Reducción , Estrés Oxidativo
11.
Free Radic Biol Med ; 89: 1231-47, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26496207

RESUMEN

Ascorbate (Asc) as a single agent suppressed growth of several tumor cell lines in a mouse model. It has been tested in a Phase I Clinical Trial on pancreatic cancer patients where it exhibited no toxicity to normal tissue yet was of only marginal efficacy. The mechanism of its anticancer effect was attributed to the production of tumoricidal hydrogen peroxide (H2O2) during ascorbate oxidation catalyzed by endogenous metalloproteins. The amount of H2O2 could be maximized with exogenous catalyst that has optimized properties for such function and is localized within tumor. Herein we studied 14 Mn porphyrins (MnPs) which differ vastly with regards to their redox properties, charge, size/bulkiness and lipophilicity. Such properties affect the in vitro and in vivo ability of MnPs (i) to catalyze ascorbate oxidation resulting in the production of H2O2; (ii) to subsequently employ H2O2 in the catalysis of signaling proteins oxidations affecting cellular survival pathways; and (iii) to accumulate at site(s) of interest. The metal-centered reduction potential of MnPs studied, E1/2 of Mn(III)P/Mn(II)P redox couple, ranged from -200 to +350 mV vs NHE. Anionic and cationic, hydrophilic and lipophilic as well as short- and long-chained and bulky compounds were explored. Their ability to catalyze ascorbate oxidation, and in turn cytotoxic H2O2 production, was explored via spectrophotometric and electrochemical means. Bell-shape structure-activity relationship (SAR) was found between the initial rate for the catalysis of ascorbate oxidation, vo(Asc)ox and E1/2, identifying cationic Mn(III) N-substituted pyridylporphyrins with E1/2>0 mV vs NHE as efficient catalysts for ascorbate oxidation. The anticancer potential of MnPs/Asc system was subsequently tested in cellular (human MCF-7, MDA-MB-231 and mouse 4T1) and animal models of breast cancer. At the concentrations where ascorbate (1mM) and MnPs (1 or 5 µM) alone did not trigger any alteration in cell viability, combined treatment suppressed cell viability up to 95%. No toxicity was observed with normal human breast epithelial HBL-100 cells. Bell-shape relationship, essentially identical to vo(Asc)oxvs E1/2, was also demonstrated between MnP/Asc-controlled cytotoxicity and E1/2-controlled vo(Asc)ox. Magnetic resonance imaging studies were conducted to explore the impact of ascorbate on T1-relaxivity. The impact of MnP/Asc on intracellular thiols and on GSH/GSSG and Cys/CySS ratios in 4T1 cells was assessed and cellular reduction potentials were calculated. The data indicate a significant increase in cellular oxidative stress induced by MnP/Asc. Based on vo(Asc)oxvs E1/2 relationships and cellular toxicity, MnTE-2-PyP(5+) was identified as the best catalyst among MnPs studied. Asc and MnTE-2-PyP(5+) were thus tested in a 4T1 mammary mouse flank tumor model. The combination of ascorbate (4 g/kg) and MnTE-2-PyP(5+) (0.2mg/kg) showed significant suppression of tumor growth relative to either MnTE-2-PyP(5+) or ascorbate alone. About 7-fold higher accumulation of MnTE-2-PyP(5+) in tumor vs normal tissue was found to contribute largely to the anticancer effect.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Ácido Ascórbico/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Metaloporfirinas/farmacología , Animales , Western Blotting , Mama/efectos de los fármacos , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Catálisis , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimioterapia Combinada , Femenino , Humanos , Peróxido de Hidrógeno/farmacología , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos BALB C , Oxidantes/farmacología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Free Radic Biol Med ; 86: 308-21, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26026699

RESUMEN

Because of the increased insight into the biological role of hydrogen peroxide (H2O2) under physiological and pathological conditions and the role it presumably plays in the action of natural and synthetic redox-active drugs, there is a need to accurately define the type and magnitude of reactions that may occur with this intriguing and key species of redoxome. Historically, and frequently incorrectly, the impact of catalase-like activity has been assigned to play a major role in the action of many redox-active drugs, mostly SOD mimics and peroxynitrite scavengers, and in particular MnTBAP(3-) and Mn salen derivatives. The advantage of one redox-active compound over another has often been assigned to the differences in catalase-like activity. Our studies provide substantial evidence that Mn(III) N-alkylpyridylporphyrins couple with H2O2 in actions other than catalase-related. Herein we have assessed the catalase-like activities of different classes of compounds: Mn porphyrins (MnPs), Fe porphyrins (FePs), Mn(III) salen (EUK-8), and Mn(II) cyclic polyamines (SOD-active M40403 and SOD-inactive M40404). Nitroxide (tempol), nitrone (NXY-059), ebselen, and MnCl2, which have not been reported as catalase mimics, were used as negative controls, while catalase enzyme was a positive control. The dismutation of H2O2 to O2 and H2O was followed via measuring oxygen evolved with a Clark oxygen electrode at 25°C. The catalase enzyme was found to have kcat(H2O2)=1.5×10(6)M(-1) s(-1). The yield of dismutation, i.e., the maximal amount of O2 evolved, was assessed also. The magnitude of the yield reflects an interplay between the kcat(H2O2) and the stability of compounds toward H2O2-driven oxidative degradation, and is thus an accurate measure of the efficacy of a catalyst. The kcat(H2O2) values for 12 cationic Mn(III) N-substituted (alkyl and alkoxyalkyl) pyridylporphyrin-based SOD mimics and Mn(III) N,N'-dialkylimidazolium porphyrin, MnTDE-2-ImP(5+), ranged from 23 to 88M(-1) s(-1). The analogous Fe(III) N-alkylpyridylporphyrins showed ~10-fold higher activity than the corresponding MnPs, but the values of kcat(H2O2) are still ~4 orders of magnitude lower than that of the enzyme. While the kcat(H2O2) values for Fe ethyl and n-octyl analogs were 803.5 and 368.4M(-1) s(-1), respectively, the FePs are more prone to H2O2-driven oxidative degradation, therefore allowing for similar yields in H2O2 dismutation as analogous MnPs. The kcat(H2O2) values are dependent on the electron deficiency of the metal site as it controls the peroxide binding in the first step of the dismutation process. SOD-like activities depend on electron deficiency of the metal site also, as it controls the first step of O2(●-) dismutation. In turn, the kcat(O2(●-)) parallels the kcat(H2O2). Therefore, the electron-rich anionic non-SOD mimic MnTBAP(3-) has essentially very low catalase-like activity, kcat(H2O2)=5.8M(-1) s(-1). The catalase-like activities of Mn(III) and Fe(III) porphyrins are at most, 0.0004 and 0.05% of the enzyme activity, respectively. The kcat(H2O2) values of 8.2 and 6.5M(-1) s(-1) were determined for electron-rich Mn(II) cyclic polyamine-based compounds, M40403 and M40404, respectively. The EUK-8, with modest SOD-like activity, has only slightly higher kcat(H2O2)=13.5M(-1) s(-1). The biological relevance of kcat(H2O2) of MnTE-2-PyP(5+), MnTDE-2-ImP(5+), MnTBAP(3-), FeTE-2-PyP(5+), M40403, M40404, and Mn salen was evaluated in wild-type and peroxidase/catalase-deficient E. coli.


Asunto(s)
Antioxidantes/química , Catalasa/química , Antioxidantes/farmacología , Catálisis , Complejos de Coordinación/química , Evaluación Preclínica de Medicamentos , Escherichia coli/efectos de los fármacos , Peróxido de Hidrógeno/química , Cinética , Viabilidad Microbiana/efectos de los fármacos , Imitación Molecular , Oxidación-Reducción , Porfirinas/química , Porfirinas/farmacología
13.
Molecules ; 20(5): 8893-912, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25993419

RESUMEN

The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS) and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90%) in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90%) depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10) compared to bare ZnP which showed a high microbicidal activity (~3 log10) when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.


Asunto(s)
Compuestos de Cadmio/farmacología , Candida albicans/efectos de los fármacos , Metaloporfirinas/farmacología , Fármacos Fotosensibilizantes/farmacología , Puntos Cuánticos/administración & dosificación , Telurio/farmacología , Compuestos de Cadmio/química , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Supervivencia Celular/efectos de los fármacos , Humanos , Luz , Fotoquimioterapia , Puntos Cuánticos/química , Telurio/química
14.
Inorg Chem ; 53(21): 11467-83, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25333724

RESUMEN

Our goal herein has been to gain further insight into the parameters which control porphyrin therapeutic potential. Mn porphyrins (MnTnOct-2-PyP(5+), MnTnHexOE-2-PyP(5+), MnTE-2-PyPhP(5+), and MnTPhE-2-PyP(5+)) that bear the same positive charge and same number of carbon atoms at meso positions of porphyrin core were explored. The carbon atoms of their meso substituents are organized to form either linear or cyclic structures of vastly different redox properties, bulkiness, and lipophilicities. These Mn porphyrins were compared to frequently studied compounds, MnTE-2-PyP(5+), MnTE-3-PyP(5+), and MnTBAP(3-). All Mn(III) porphyrins (MnPs) have metal-centered reduction potential, E1/2 for Mn(III)P/Mn(II)P redox couple, ranging from -194 to +340 mV versus NHE, log kcat(O2(•-)) from 3.16 to 7.92, and log kred(ONOO(-)) from 5.02 to 7.53. The lipophilicity, expressed as partition between n-octanol and water, log POW, was in the range -1.67 to -7.67. The therapeutic potential of MnPs was assessed via: (i) in vitro ability to prevent spontaneous lipid peroxidation in rat brain homogenate as assessed by malondialdehyde levels; (ii) in vivo O2(•-) specific assay to measure the efficacy in protecting the aerobic growth of SOD-deficient Saccharomyces cerevisiae; and (iii) aqueous solution chemistry to measure the reactivity toward major in vivo endogenous antioxidant, ascorbate. Under the conditions of lipid peroxidation assay, the transport across the cellular membranes, and in turn shape and size of molecule, played no significant role. Those MnPs of E1/2 ∼ +300 mV were the most efficacious, significantly inhibiting lipid peroxidation in 0.5-10 µM range. At up to 200 µM, MnTBAP(3-) (E1/2 = -194 mV vs NHE) failed to inhibit lipid peroxidation, while MnTE-2-PyPhP(5+) with 129 mV more positive E1/2 (-65 mV vs NHE) was fully efficacious at 50 µM. The E1/2 of Mn(III)P/Mn(II)P redox couple is proportional to the log kcat(O2(•-)), i.e., the SOD-like activity of MnPs. It is further proportional to kred(ONOO(-)) and the ability of MnPs to prevent lipid peroxidation. In turn, the inhibition of lipid peroxidation by MnPs is also proportional to their SOD-like activity. In an in vivo S. cerevisiae assay, however, while E1/2 predominates, lipophilicity significantly affects the efficacy of MnPs. MnPs of similar log POW and E1/2, that have linear alkyl or alkoxyalkyl pyridyl substituents, distribute more easily within a cell and in turn provide higher protection to S. cerevisiae in comparison to MnP with bulky cyclic substituents. The bell-shape curve, with MnTE-2-PyP(5+) exhibiting the highest ability to catalyze ascorbate oxidation, has been established and discussed. Our data support the notion that the SOD-like activity of MnPs parallels their therapeutic potential, though species other than O2(•-), such as peroxynitrite, H2O2, lipid reactive species, and cellular reductants, may be involved in their mode(s) of action(s).


Asunto(s)
Metaloporfirinas/farmacología , Saccharomyces cerevisiae/enzimología , Superóxido Dismutasa/antagonistas & inhibidores , Cationes/química , Cationes/farmacología , Relación Dosis-Respuesta a Droga , Peroxidación de Lípido/efectos de los fármacos , Manganeso/química , Manganeso/farmacología , Metaloporfirinas/química , Estructura Molecular , Relación Estructura-Actividad , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa/metabolismo
15.
Inorg Chem ; 53(14): 7351-60, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25001488

RESUMEN

Azanone ((1)HNO, nitroxyl) is a highly reactive molecule with interesting chemical and biological properties. Like nitric oxide (NO), its main biologically related targets are oxygen, thiols, and metalloproteins, particularly heme proteins. As HNO dimerizes with a rate constant between 10(6) and 10(7) M(-1) s(-1), reactive studies are performed using donors, which are compounds that spontaneously release HNO in solution. In the present work, we studied the reaction mechanism and kinetics of two azanone donors Angelís Salt and toluene sulfohydroxamic acid (TSHA) with eight different Mn porphyrins as trapping agents. These porphyrins differ in their total peripheral charge (positively or negatively charged) and in their Mn(III)/Mn(II) reduction potential, showing for each case positive (oxidizing) and negative (reducing) values. Our results show that the reduction potential determines the azanone donor reaction mechanism. While oxidizing porphyrins accelerate decomposition of the donor, reducing porphyrins react with free HNO. Our results also shed light into the donor decomposition mechanism using ab initio methods and provide a thorough analysis of which MnP are the best candidates for azanone trapping and quantification experiments.


Asunto(s)
Hierro/química , Manganeso/química , Óxidos de Nitrógeno/química , Porfirinas/química , Cinética , Oxidación-Reducción
16.
Redox Biol ; 2: 400-10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24624330

RESUMEN

With the goal to enhance the distribution of cationic Mn porphyrins within mitochondria, the lipophilic Mn(III)meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) has been synthesized and tested in several different model of diseases, where it shows remarkable efficacy at as low as 50 µg/kg single or multiple doses. Yet, in a rat lung radioprotection study, at higher 0.6-1 mg/kg doses, due to its high accumulation and micellar character, it became toxic. To avoid the toxicity, herein the pulmonary radioprotection of MnTnHex-2-PyP(5+) was assessed at 50 µg/kg. Fischer rats were irradiated to their right hemithorax (28 Gy) and treated with 0.05 mg/kg/day of MnTnHex-2-PyP(5+) for 2 weeks by subcutaneously-implanted osmotic pumps, starting at 2 h post-radiation. The body weights and breathing frequencies were followed for 10 weeks post-radiation, when the histopathology and immunohistochemistry were assessed. Impact of MnTnHex-2-PyP(5+) on macrophage recruitment (ED-1), DNA oxidative damage (8-OHdG), TGF-ß1, VEGF(A) and HIF-1α were measured. MnTnHex-2-PyP(5+) significantly decreased radiation-induced lung histopathological (H&E staining) and functional damage (breathing frequencies), suppressed oxidative stress directly (8-OHdG), or indirectly, affecting TGF-ß1, VEGF (A) and HIF-1α pathways. The magnitude of the therapeutic effects is similar to the effects demonstrated under same experimental conditions with 120-fold higher dose of ~5000-fold less lipophilic Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+).


Asunto(s)
Pulmón/efectos de los fármacos , Pulmón/efectos de la radiación , Metaloporfirinas/administración & dosificación , Protectores contra Radiación/administración & dosificación , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Esquema de Medicación , Femenino , Infusiones Subcutáneas , Pulmón/patología , Metaloporfirinas/farmacología , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Protectores contra Radiación/farmacología , Ratas , Ratas Endogámicas F344 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
17.
Antioxid Redox Signal ; 20(15): 2416-36, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23964890

RESUMEN

SIGNIFICANCE: Half a century of research provided unambiguous proof that superoxide and species derived from it-reactive oxygen species (ROS)-play a central role in many diseases and degenerative processes. This stimulated the search for pharmaceutical agents that are capable of preventing oxidative damage, and methods of assessing their therapeutic potential. RECENT ADVANCES: The limitations of superoxide dismutase (SOD) as a therapeutic tool directed attention to small molecules, SOD mimics, that are capable of catalytically scavenging superoxide. Several groups of compounds, based on either metal complexes, including metalloporphyrins, metallocorroles, Mn(II) cyclic polyamines, and Mn(III) salen derivatives, or non-metal based compounds, such as fullerenes, nitrones, and nitroxides, have been developed and studied in vitro and in vivo. Very few entered clinical trials. CRITICAL ISSUES AND FUTURE DIRECTIONS: Development of SOD mimics requires in-depth understanding of their mechanisms of biological action. Elucidation of both molecular features, essential for efficient ROS-scavenging in vivo, and factors limiting the potential side effects requires biologically relevant and, at the same time, relatively simple testing systems. This review discuses the advantages and limitations of genetically engineered SOD-deficient unicellular organisms, Escherichia coli and Saccharomyces cerevisiae as tools for investigating the efficacy and mechanisms of biological actions of SOD mimics. These simple systems allow the scrutiny of the minimal requirements for a functional SOD mimic: the association of a high catalytic activity for superoxide dismutation, low toxicity, and an efficient cellular uptake/biodistribution.


Asunto(s)
Imitación Molecular , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología , Animales , Catálisis , Activación Enzimática , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metaloporfirinas/química , Metaloporfirinas/metabolismo , Metaloporfirinas/farmacología , Mutación , Superóxido Dismutasa/química , Superóxido Dismutasa/genética
18.
Inorg Chem ; 52(10): 5677-91, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23646875

RESUMEN

The different biological behavior of cationic Fe and Mn pyridylporphyrins in Escherichia coli and mouse studies prompted us to revisit and compare their chemistry. For that purpose, the series of ortho and meta isomers of Fe(III) meso-tetrakis-N-alkylpyridylporphyrins, alkyl being methyl to n-octyl, were synthesized and characterized by elemental analysis, UV/vis spectroscopy, mass spectrometry, lipophilicity, protonation equilibria of axial waters, metal-centered reduction potential, E(1/2) for M(III)P/M(II)P redox couple (M = Fe, Mn, P = porphyrin), kcat for the catalysis of O2(•-) dismutation, stability toward peroxide-driven porphyrin oxidative degradation (produced in the catalysis of ascorbate oxidation by MP), ability to affect growth of SOD-deficient E. coli, and toxicity to mice. Electron-deficiency of the metal site is modulated by the porphyrin ligand, which renders Fe(III) porphyrins ≥5 orders of magnitude more acidic than the analogous Mn(III) porphyrins, as revealed by the pKa1 of axially coordinated waters. The 5 log units difference in the acidity between the Mn and Fe sites in porphyrin translates into the predominance of tetracationic (OH)(H2O)FeP complexes relative to pentacationic (H2O)2MnP species at pH ∼7.8. This is additionally evidenced in large differences in the E(1/2) values of M(III)P/M(II)P redox couples. The presence of hydroxo ligand labilizes trans-axial water which results in higher reactivity of Fe relative to Mn center. The differences in the catalysis of O2(•-) dismutation (log kcat) between Fe and Mn porphyrins is modest, 2.5-5-fold, due to predominantly outer-sphere, with partial inner-sphere character of two reaction steps. However, the rate constant for the inner-sphere H2O2-based porphyrin oxidative degradation is 18-fold larger for (OH)(H2O)FeP than for (H2O)2MnP. The in vivo consequences of the differences between the Fe and Mn porphyrins were best demonstrated in SOD-deficient E. coli growth. On the basis of fairly similar log kcat(O2(•-)) values, a very similar effect on the growth of SOD-deficient E. coli was anticipated by both metalloporphyrins. Yet, while (H2O)2MnTE-2-PyP(5+) was fully efficacious at ≥20 µM, the Fe analogue (OH)(H2O)FeTE-2-PyP(4+) supported SOD-deficient E. coli growth at as much as 200-fold lower doses in the range of 0.1-1 µM. Moreover the pattern of SOD-deficient E. coli growth was different with Mn and Fe porphyrins. Such results suggested a different mode of action of these metalloporphyrins. Further exploration demonstrated that (1) 0.1 µM (OH)(H2O)FeTE-2-PyP(4+) provided similar growth stimulation as the 0.1 µM Fe salt, while the 20 µM Mn salt provides no protection to E. coli; and (2) 1 µM Fe porphyrin is fully degraded by 12 h in E. coli cytosol and growth medium, while Mn porphyrin is not. Stimulation of the aerobic growth of SOD-deficient E. coli by the Fe porphyrin is therefore due to iron acquisition. Our data suggest that in vivo, redox-driven degradation of Fe porphyrins resulting in Fe release plays a major role in their biological action. Possibly, iron reconstitutes enzymes bearing [4Fe-4S] clusters as active sites. Under the same experimental conditions, (OH)(H2O)FePs do not cause mouse arterial hypotension, whereas (H2O)2MnPs do, which greatly limits the application of Mn porphyrins in vivo.


Asunto(s)
Escherichia coli/efectos de los fármacos , Compuestos Férricos/química , Manganeso/química , Metaloporfirinas/farmacología , Agua/química , Animales , Cationes/química , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Masculino , Metaloporfirinas/síntesis química , Metaloporfirinas/química , Ratones , Ratones Endogámicos C57BL , Conformación Molecular , Oxidación-Reducción , Solubilidad
19.
Inorg Chem ; 52(8): 4121-3, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23551184

RESUMEN

Manganese porphyrin-based drugs are potent mimics of the enzyme superoxide dismutase. They exert remarkable efficacy in disease models and are entering clinical trials. Two lead compounds, MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+), have similar catalytic rates, but differ in their alkyl chain substituents (ethyl vs n-hexyl). Herein we demonstrate that these changes in ring substitution impact upon drug intracellular distribution and pharmacological mechanism, with MnTnHex-2-PyP(5+) superior in augmenting menadione toxicity. These findings establish that both catalytic activity and intracellular distribution determine drug action.


Asunto(s)
Antioxidantes/farmacología , Antioxidantes/farmacocinética , Metaloporfirinas/farmacología , Metaloporfirinas/farmacocinética , Superóxido Dismutasa/química , Antioxidantes/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Metaloporfirinas/química
20.
Free Radic Biol Med ; 60: 157-67, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23416365

RESUMEN

Chemoresistance due to oxidative stress resistance or upregulation of Bcl-2 contributes to poor outcome in the treatment of hematological malignancies. In this study, we utilize the copper-chelator drug ATN-224 (choline tetrathiomolybdate) to induce cell death in oxidative stress-resistant cells and cells overexpressing Bcl-2 by modulating the cellular redox environment and causing mitochondrial dysfunction. ATN-224 treatment decreases superoxide dismutase 1 (SOD1) activity, increases intracellular oxidants, and induces peroxynitrite-dependent cell death. ATN-224 also targets the mitochondria, decreasing both cytochrome c oxidase (CcOX) activity and mitochondrial membrane potential. The concentration of ATN-224 required to induce cell death is proportional to SOD1 levels, but independent of Bcl-2 status. In combination with doxorubicin, ATN-224 enhances cell death. In primary B-cell acute lymphoblastic leukemia patient samples, ATN-224 decreases the viable cell number. Our findings suggest that ATN-224's dual targeting of SOD1 and CcOX is a promising approach for treatment of hematological malignancies either as an adjuvant or as a single agent.


Asunto(s)
Quelantes/administración & dosificación , Neoplasias Hematológicas/tratamiento farmacológico , Molibdeno/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Linfocitos B/citología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cobre/química , Cobre/metabolismo , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/fisiopatología , Humanos , Ratones , Estrés Oxidativo/efectos de los fármacos , Ácido Peroxinitroso/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-bcl-2 , Estrés Fisiológico/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...