Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1282024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149173

RESUMEN

Introduction: The aging population poses significant challenges to healthcare systems globally, necessitating a comprehensive understanding of age-related changes affecting physical function. Age-related functional decline highlights the urgency of understanding how tissue composition changes impact mobility, independence, and quality of life in older adults. Previous research has emphasized the influence of muscle quality, but the role of tissue composition asymmetry across various tissue types remains understudied. This work develops asymmetry indicators based on muscle, connective and fat tissue extracted from cross-sectional CT scans, and shows their interplay with BMI and lower extremity function among community-dwelling older adults. Methods: We used data from 3157 older adults from 71 to 98 years of age (mean: 80.06). Tissue composition asymmetry was defined by the differences between the right and left sides using CT scans and the non-Linear Trimodal Regression Analysis (NTRA) parameters. Functional mobility was measured through a 6-meter gait (Normal-GAIT and Fast-GAIT) and the Timed Up and Go (TUG) performance test. Statistical analysis included paired t-tests, polynomial fitting curves, and regression analysis to uncover relationships between tissue asymmetry, age, and functional mobility. Results: Findings revealed an increase in tissue composition asymmetry with age. Notably, muscle and connective tissue width asymmetry showed significant variation across age groups. BMI classifications and gait tasks also influenced tissue asymmetry. The Fast-GAIT task demonstrated a substantial separation in tissue asymmetry between normal and slow groups, whereas the Normal-GAIT and the TUG task did not exhibit such distinction. Muscle quality, as reflected by asymmetry indicators, appears crucial in understanding age-related changes in muscle function, while fat and connective tissue play roles in body composition and mobility. Discussion: Our study emphasizes the importance of tissue asymmetry indicators in understanding how muscle function changes with age in older individuals, demonstrating their role as risk factor and their potential employment in clinical assessment. We also identified the influence of fat and connective tissue on body composition and functional mobility. Incorporating the NTRA technology into clinical evaluations could enable personalized interventions for older adults, promoting healthier aging and maintaining physical function.

2.
Gait Posture ; 105: 92-98, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515891

RESUMEN

BACKGROUND: Single and motor or cognitive dual-gait analysis is often used in clinical settings to evaluate older adults affected by neurological and movement disorders or with a stroke history. Gait features are frequently investigated using Machine Learning (ML) with significant results that can help clinicians in diagnosis and rehabilitation. The present study aims to classify patients with stroke, neurological and movement disorders using ML to analyze gait characteristics and to understand the importance of the single and dual-task features among Korean older adults. METHODS: A cohort of 122 non-hospitalized Korean older adult participated in a single and a cognitive dual-task gait performance analysis. The extracted temporal and spatial features, together with clinical data, were used as input for the binary classification using tree-based ML algorithms. A repeated-stratified 10-fold cross-validation was performed to better evaluate multiple classification metrics with a final feature importance analysis. RESULTS AND SIGNIFICANCE: The best accuracy - maximum >90 % - for gait and neurological disorders classification was obtained with Random Forest. In the stroke classification a 91.7 % of maximum accuracy was reached, with a significant recall of 92 %. The feature importance analysis showed a substantial balance between single and dual-task, while clinical data did not show elevated importance. The current findings indicate that a cognitive dual-task gait performance is highly recommendable together with a single-task in the analysis of older population, particularly for patients with a history of stroke. The results could be useful to medical professionals in treating and diagnosing motor and neurological disorders, and to improve rehabilitation strategies for stroke patients. Furthermore, the results confirm the proficiency of the tree-based ML algorithms in biomedical data analysis. Finally, in the future, this research could be replicated with a non-Asian population dataset to deepen the understanding of gait differences between Asian-Korean population and other ethnicities.


Asunto(s)
Trastornos del Movimiento , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Anciano , Cognición , Marcha , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/psicología , República de Corea
3.
Cartilage ; 14(3): 351-374, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36541701

RESUMEN

OBJECTIVE: Assessment of human joint cartilage is a crucial tool to detect and diagnose pathological conditions. This exploratory study developed a workflow for 3D modeling of cartilage and bone based on multimodal imaging. New evaluation metrics were created and, a unique set of data was gathered from healthy controls and patients with clinically evaluated degeneration or trauma. DESIGN: We present a novel methodology to evaluate knee bone and cartilage based on features extracted from magnetic resonance imaging (MRI) and computed tomography (CT) data. We developed patient specific 3D models of the tibial, femoral, and patellar bones and cartilages. Forty-seven subjects with a history of degenerative disease, traumatic events, or no symptoms or trauma (control group) were recruited in this study. Ninety-six different measurements were extracted from each knee, 78 2D and 18 3D measurements. We compare the sensitivity of different metrics to classify the cartilage condition and evaluate degeneration. RESULTS: Selected features extracted show significant difference between the 3 groups. We created a cumulative index of bone properties that demonstrated the importance of bone condition to assess cartilage quality, obtaining the greatest sensitivity on femur within medial and femoropatellar compartments. We were able to classify degeneration with a maximum recall value of 95.9 where feature importance analysis showed a significant contribution of the 3D parameters. CONCLUSION: The present work demonstrates the potential for improving sensitivity in cartilage assessment. Indeed, current trends in cartilage research point toward improving treatments and therefore our contribution is a first step toward sensitive and personalized evaluation of cartilage condition.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Rodilla , Enfermedades de los Cartílagos/diagnóstico por imagen , Enfermedades de los Cartílagos/patología , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Rótula/diagnóstico por imagen
4.
Eur J Transl Myol ; 32(2)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35766481

RESUMEN

Knee Osteoarthritis (OA) is a highly prevalent condition affecting knee joint that causes loss of physical function and pain. Clinical treatments are mainly focused on pain relief and limitation of disabilities; therefore, it is crucial to find new paradigms assessing cartilage conditions for detecting and monitoring the progression of OA. The goal of this paper is to highlight the predictive power of several features, such as cartilage density, volume and surface. These features were extracted from the 3D reconstruction of knee joint of forty-seven different patients, subdivided into two categories: degenerative and non-degenerative. The most influent parameters for the degeneration of the knee cartilage were determined using two machine learning classification algorithms (logistic regression and support vector machine); later, box plots, which depicted differences between the classes by gender, were presented to analyze several of the key features' trend. This work is part of a strategy that aims to find a new solution to assess cartilage condition based on new-investigated features.

5.
Sci Rep ; 12(1): 8996, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637235

RESUMEN

Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment. Measurements were performed on 54 professional athletes who self-reported their history of concussion or non-concussion. Both groups completed a concussion symptom scale (SCAT5) before the measurement. We analyzed biosignals and CoP parameters before and after the platform movements, to compare the net response of individual postural control. The results showed that BioVRSea discriminated between the concussion and non-concussion groups. Particularly, EEG power spectral density in delta and theta bands showed significant changes in the concussion group and right soleus median frequency from the EMG signal differentiated concussed individuals with balance problems from the other groups. Anterior-posterior CoP frequency-based parameters discriminated concussed individuals with balance problems. Finally, we used machine learning to classify concussion and non-concussion, demonstrating that combining SCAT5 and BioVRSea parameters gives an accuracy up to 95.5%. This study is a step towards quantitative assessment of concussion.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Realidad Virtual , Atletas , Biomarcadores , Conmoción Encefálica/diagnóstico , Humanos
6.
Diagnostics (Basel) ; 12(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35204370

RESUMEN

For the observation of human joint cartilage, X-ray, computed tomography (CT) or magnetic resonance imaging (MRI) are the main diagnostic tools to evaluate pathologies or traumas. The current work introduces a set of novel measurements and 3D features based on MRI and CT data of the knee joint, used to reconstruct bone and cartilages and to assess cartilage condition from a new perspective. Forty-seven subjects presenting a degenerative disease, a traumatic injury or no symptoms or trauma were recruited in this study and scanned using CT and MRI. Using medical imaging software, the bone and cartilage of the knee joint were segmented and 3D reconstructed. Several features such as cartilage density, volume and surface were extracted. Moreover, an investigation was carried out on the distribution of cartilage thickness and curvature analysis to identify new markers of cartilage condition. All the extracted features were used with advanced statistics tools and machine learning to test the ability of our model to predict cartilage conditions. This work is a first step towards the development of a new gold standard of cartilage assessment based on 3D measurements.

7.
Front Hum Neurosci ; 16: 1038976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590061

RESUMEN

Introduction: Postural control is a sensorimotor mechanism that can reveal neurophysiological disorder. The present work studies the quantitative response to a complex postural control task. Methods: We measure electroencephalography (EEG), electromyography (EMG), and center of pressure (CoP) signals during a virtual reality (VR) experience called BioVRSea with the aim of classifying different postural control responses. The BioVRSea paradigm is based on six different phases where motion and visual stimulation are modulated throughout the experiment, inducing subjects to a different adaptive postural control strategy. The goal of the study is to assess the predictability of those responses. During the experiment, brain activity was recorded from a 64-channel EEG, muscle activity was determined with six wireless EMG sensors placed on lower leg muscles, and individual movement measured by the CoP. One-hundred and seventy-two healthy individuals underwent the BioVRSea paradigm and 318 features were extracted from each phase of the experiment. Machine learning techniques were employed to: (1) classify the phases of the experiment; (2) assess the most notable features; and (3) identify a quantitative pattern for healthy responses. Results: The results show that the EEG features are not sufficient to predict the distinct phases of the experiment, but they can distinguish visual and motion onset stimulation. EMG features and CoP features, when used jointly, can predict five out of six phases with a mean accuracy of 74.4% (±8%) and an AUC of 0.92. The most important feature to identify the different adaptive strategies is the Squared Root Mean Distance of points on Medio-Lateral axis (RDIST_ML). Discussion: This work shows the importance and the feasibility of a quantitative evaluation in a complex postural control task and demonstrates the potential of EEG, CoP, and EMG for assessing pathological conditions. These predictive systems pave the way for developing an objective assessment of pathological behavior PC responses. This will be a first step in identifying individual disorders and treatment options.

8.
Eur J Transl Myol ; 31(3)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251162

RESUMEN

Aging well is directly associated to a healthy lifestyle. The focus of this paper is to relate individual wellness with medical image features. Non-linear trimodal regression analysis (NTRA) is a novel method that models the radiodensitometric distributions of x-ray computed tomography (CT) cross-sections. It generates 11 patient-specific parameters that describe the quality and quantity of muscle, fat, and connective tissues. In this research, the relationship of these 11 NTRA parameters with age, physical activity, and lifestyle is investigated in the 3,157 elderly volunteers AGES-I dataset. First, univariate statistical analyses were performed, and subjects were grouped by age and self-reported past (youth-midlife) and present (within 12 months of the survey) physical activity to ascertain which parameters were the most influential. Then, machine learning (ML) analyses were conducted to classify patients using NTRA parameters as input features for three ML algorithms. ML is also used to classify a Lifestyle index using the age groups. This classification analysis yielded robust results with the lifestyle index underlying the relevant differences of the soft tissues between age groups, especially in fat and connective tissue. Univariate statistical models suggested that NTRA parameters may be susceptible to age and differences between past and present physical activity levels. Moreover, for both age and physical activity, lean muscle parameters expressed more significant variation than fat and connective tissues.

9.
Front Bioeng Biotechnol ; 9: 635661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869153

RESUMEN

Motion sickness (MS) and postural control (PC) conditions are common complaints among those who passively travel. Many theories explaining a probable cause for MS have been proposed but the most prominent is the sensory conflict theory, stating that a mismatch between vestibular and visual signals causes MS. Few measurements have been made to understand and quantify the interplay between muscle activation, brain activity, and heart behavior during this condition. We introduce here a novel multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform and several biomedical sensors to study the physiology associated with MS and seasickness. This study reports the results from 28 individuals: the subjects stand on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG sensors on the gastrocnemius muscles, and a sensor on the chest that captures the heart rate (HR). The virtual environment shows a boat surrounded by waves whose frequency and amplitude are synchronized with the platform movement. Three measurement protocols are performed by each subject, after each of which they answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify the symptoms combining all of them in the Motion Sickness Index (I MS ). These parameters create the MS database composed of 83 measurements. All indexes undergo univariate statistical analysis, with EMG parameters being most significant, in contrast to EEG parameters. Machine learning (ML) gives good results in the classification of the binary indexes, finding random forest to be the best algorithm (accuracy of 74.7 for I MS ). The feature importance analysis showed that muscle parameters are the most relevant, and for EEG analysis, beta wave results were the most important. The present work serves as the first step in identifying the key physiological factors that differentiate those who suffer from MS from those who do not using the novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of PC disruptions, which are among the most disturbing and costly health conditions affecting humans.

10.
IEEE J Biomed Health Inform ; 25(6): 2103-2112, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33306475

RESUMEN

The strong age dependency of many deleterious health outcomes likely reflects the cumulative effects from a variety of risk and protective factors that occur over one's life course. This notion has become increasingly explored in the etiology of chronic disease and associated comorbidities in aging. Our recent work has shown the robust classification of individuals at risk for cardiovascular pathophysiology using CT-based soft tissue radiodensity parameters obtained from nonlinear trimodal regression analysis (NTRA). Past and present lifestyle influences the incidence of comorbidities like hypertension (HTN), diabetes (DM) and cardiac diseases. 2,943 elderly subjects from the AGES-Reykjavik study were sorted into a three-level binary-tree structure defined by: 1) lifestyle factors (smoking and self-reported physical activity level), 2) comorbid HTN or DM, and 3) cardiac pathophysiology. NTRA parameters were extracted from mid-thigh CT cross-sections to quantify radiodensitometric changes in three tissue types: lean muscle, fat, and loose-connective tissue. Between-group differences were assessed at each binary-tree level, which were then used in tree-based machine learning (ML) models to classify subjects with DM or HTN. Classification scores for detecting HTN or DM based on lifestyle factors were excellent (AUCROC: 0.978 and 0.990, respectively). Finally, tissue importance analysis underlined the comparatively-high significance of connective tissue parameters in ML classification, while predictive models of DM onset from five-year longitudinal data gave a classification accuracy of 94.9%. Altogether, this work serves as an important milestone toward the construction of predictive tools for assessing the impact of lifestyle factors and healthy aging based on a single image.


Asunto(s)
Diabetes Mellitus , Envejecimiento Saludable , Hipertensión , Anciano , Diabetes Mellitus/diagnóstico por imagen , Diabetes Mellitus/epidemiología , Humanos , Hipertensión/diagnóstico por imagen , Hipertensión/epidemiología , Estilo de Vida , Músculos , Factores de Riesgo
11.
Diagnostics (Basel) ; 10(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066350

RESUMEN

There are two surgical approaches to performing total hip arthroplasty (THA): a cemented or uncemented type of prosthesis. The choice is usually based on the experience of the orthopaedic surgeon and on parameters such as the age and gender of the patient. Using machine learning (ML) techniques on quantitative biomechanical and bone quality data extracted from computed tomography, electromyography and gait analysis, the aim of this paper was, firstly, to help clinicians use patient-specific biomarkers from diagnostic exams in the prosthetic decision-making process. The second aim was to evaluate patient long-term outcomes by predicting the bone mineral density (BMD) of the proximal and distal parts of the femur using advanced image processing analysis techniques and ML. The ML analyses were performed on diagnostic patient data extracted from a national database of 51 THA patients using the Knime analytics platform. The classification analysis achieved 93% accuracy in choosing the type of prosthesis; the regression analysis on the BMD data showed a coefficient of determination of about 0.6. The start and stop of the electromyographic signals were identified as the best predictors. This study shows a patient-specific approach could be helpful in the decision-making process and provide clinicians with information regarding the follow up of patients.

12.
Eur J Transl Myol ; 30(1): 8892, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32499893

RESUMEN

The nonlinear trimodal regression analysis (NTRA) method based on radiodensitometric CT images distributions was developed for the quantitative characterization of soft tissue changes according to the lower extremity function of elderly subjects. In this regard, the NTRA method defines 11 subject-specific soft tissue parameters and has illustrated high sensitivity to changes in skeletal muscle form and function. The present work further explores the use of these 11 NTRA parameters in the construction of a machine learning (ML) system to predict body mass index and isometric leg strength using tree-based regression algorithms. Results obtained from these models demonstrate that when using an ML approach, these soft tissue features have a significant predictive value for these physiological parameters. These results further support the use of NTRA-based ML predictive assessment and support the future investigation of other physiological parameters and comorbidities.

13.
Sci Rep ; 10(1): 2863, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071412

RESUMEN

The nonlinear trimodal regression analysis (NTRA) method based on radiodensitometric CT distributions was recently developed and assessed for the quantification of lower extremity function and nutritional parameters in aging subjects. However, the use of the NTRA method for building predictive models of cardiovascular health was not explored; in this regard, the present study reports the use of NTRA parameters for classifying elderly subjects with coronary heart disease (CHD), cardiovascular disease (CVD), and chronic heart failure (CHF) using multivariate logistic regression and three tree-based machine learning (ML) algorithms. Results from each model were assembled as a typology of four classification metrics: total classification score, classification by tissue type, tissue-based feature importance, and classification by age. The predictive utility of this method was modelled using CHF incidence data. ML models employing the random forests algorithm yielded the highest classification performance for all analyses, and overall classification scores for all three conditions were excellent: CHD (AUCROC: 0.936); CVD (AUCROC: 0.914); CHF (AUCROC: 0.994). Longitudinal assessment for modelling the prediction of CHF incidence was likewise robust (AUCROC: 0.993). The present work introduces a substantial step forward in the construction of non-invasive, standardizable tools for associating adipose, loose connective, and lean tissue changes with cardiovascular health outcomes in elderly individuals.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Sistema Cardiovascular/diagnóstico por imagen , Insuficiencia Cardíaca/diagnóstico por imagen , Corazón/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Algoritmos , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/fisiopatología , Femenino , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Humanos , Modelos Logísticos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Factores de Riesgo , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...