Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 110(6): 065005, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23432264

RESUMEN

Spectral measurements of visible coherent transition radiation produced by a laser-plasma-accelerated electron beam are reported. The significant periodic modulations that are observed in the spectrum result from the interference of transition radiation produced by multiple bunches of electrons. A Fourier analysis of the spectral interference fringes reveals that electrons are injected and accelerated in multiple plasma wave periods, up to at least 10 periods behind the laser pulse. The bunch separation scales with the plasma wavelength when the plasma density is changed over a wide range. An analysis of the spectral fringe visibility indicates that the first bunch contains most of the charge.

2.
Med Phys ; 39(6): 3501-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22755730

RESUMEN

PURPOSE: To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. METHODS: In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. RESULTS: It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. CONCLUSIONS: The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research.


Asunto(s)
Electrones/uso terapéutico , Rayos Láser , Aceleradores de Partículas , Gases em Plasma , Dosis de Radiación , Radioterapia/instrumentación , Estudios de Factibilidad , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica
4.
Phys Rev Lett ; 102(16): 164801, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19518716

RESUMEN

To take full advantage of a laser-plasma accelerator, stability and control of the electron beam parameters have to be achieved. The external injection scheme with two colliding laser pulses is a way to stabilize the injection of electrons into the plasma wave, and to easily tune the energy of the output beam by changing the longitudinal position of the injection. In this Letter, it is shown that by tuning the optical injection parameters, one is able to control the phase-space volume of the injected particles, and thus the charge and the energy spread of the beam. With this method, the production of a laser accelerated electron beam of 10 pC at the 200 MeV level with a 1% relative energy spread at full width half maximum (3.1% rms) is demonstrated. This unique tunability extends the capability of laser-plasma accelerators and their applications.

5.
Phys Med Biol ; 54(11): 3315-28, 2009 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-19430107

RESUMEN

In recent experiments, quasi-monoenergetic and well-collimated very-high energy electron (VHEE) beams were obtained by laser-plasma accelerators. We investigate their potential use for radiation therapy. Monte Carlo simulations are used to study the influence of the experimental characteristics such as beam energy, energy spread and initial angular distribution on the dose distributions. It is found that magnetic focusing of the electron beam improves the lateral penumbra. The dosimetric properties of the laser-accelerated VHEE beams are implemented in our inverse treatment planning system for intensity-modulated treatments. The influence of the beam characteristics on the quality of a prostate treatment plan is evaluated. In comparison to a clinically approved 6 MV IMRT photon plan, a better target coverage is achieved. The quality of the sparing of organs at risk is found to be dependent on the depth. The bladder and rectum are better protected due to the sharp lateral penumbra at low depths, whereas the femoral heads receive a larger dose because of the large scattering amplitude at larger depths.


Asunto(s)
Electrones/uso terapéutico , Rayos Láser , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Alta Energía , Simulación por Computador , Humanos , Magnetismo/métodos , Masculino , Método de Montecarlo , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Agua/química
6.
Phys Rev Lett ; 102(6): 065001, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19257594

RESUMEN

A cold optical injection mechanism for a laser-plasma accelerator is described. It relies on a short, circularly polarized, low-energy laser pulse counterpropagating to and colliding with a circularly polarized main pulse in a low density plasma. Contrary to previously published optical injection schemes, injection is not caused here by electron heating. Instead, the collision between the pulses creates a spatially periodic and time-independent beat force. This force can block the longitudinal electron motion, leading to their entry and injection into the propagating wake. In a specific setup, we compute after acceleration over 0.6 mm, a 60 MeV, 50 pC electron bunch with 0.7 MeV rms energy spread, proving the interest of this scheme to inject electron bunches with a narrow absolute energy spread. Acceleration to 3 GeV with a rms spread smaller than 1% is computed after propagation over 3.8 cm in a plasma channel.

7.
Phys Rev Lett ; 103(19): 194804, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-20365930

RESUMEN

Beam loading is the phenomenon which limits the charge and the beam quality in plasma based accelerators. An experimental study conducted with a laser-plasma accelerator is presented. Beam loading manifests itself through the decrease of the beam energy, the reduction of dark current, and the increase of the energy spread for large beam charge. 3D PIC simulations are compared to the experimental results and confirm the effects of beam loading. It is found that, in our experimental conditions, the trapped electron beams generate decelerating fields on the order of 1 (GV/m)/pC and that beam loading effects are optimized for trapped charges of about 20 pC.

8.
Nature ; 444(7120): 737-9, 2006 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17151663

RESUMEN

In laser-plasma-based accelerators, an intense laser pulse drives a large electric field (the wakefield) which accelerates particles to high energies in distances much shorter than in conventional accelerators. These high acceleration gradients, of a few hundreds of gigavolts per metre, hold the promise of compact high-energy particle accelerators. Recently, several experiments have shown that laser-plasma accelerators can produce high-quality electron beams, with quasi-monoenergetic energy distributions at the 100 MeV level. However, these beams do not have the stability and reproducibility that are required for applications. This is because the mechanism responsible for injecting electrons into the wakefield is based on highly nonlinear phenomena, and is therefore hard to control. Here we demonstrate that the injection and subsequent acceleration of electrons can be controlled by using a second laser pulse. The collision of the two laser pulses provides a pre-acceleration stage which provokes the injection of electrons into the wakefield. The experimental results show that the electron beams obtained in this manner are collimated (5 mrad divergence), monoenergetic (with energy spread <10 per cent), tuneable (between 15 and 250 MeV) and, most importantly, stable. In addition, the experimental observations are compatible with electron bunch durations shorter than 10 fs. We anticipate that this stable and compact electron source will have a strong impact on applications requiring short bunches, such as the femtolysis of water, or high stability, such as radiotherapy with high-energy electrons or radiography for materials science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA