Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Science ; 384(6695): 533-539, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38603523

RESUMEN

Short telomeres cause age-related disease, and long telomeres contribute to cancer; however, the mechanisms regulating telomere length are unclear. We developed a nanopore-based method, which we call Telomere Profiling, to determine telomere length at nearly single-nucleotide resolution. Mapping telomere reads to chromosome ends showed chromosome end-specific length distributions that could differ by more than six kilobases. Examination of telomere lengths in 147 individuals revealed that certain chromosome ends were consistently longer or shorter. The same rank order was found in newborn cord blood, suggesting that telomere length is determined at birth and that chromosome end-specific telomere length differences are maintained as telomeres shorten with age. Telomere Profiling makes precision investigation of telomere length widely accessible for laboratory, clinical, and drug discovery efforts and will allow deeper insights into telomere biology.


Asunto(s)
Mapeo Cromosómico , Secuenciación de Nanoporos , Homeostasis del Telómero , Acortamiento del Telómero , Telómero , Humanos , Masculino , Cromosomas Humanos/genética , Sangre Fetal , Secuenciación de Nanoporos/métodos , Telómero/genética , Homeostasis del Telómero/genética , Acortamiento del Telómero/genética , Mapeo Cromosómico/métodos
2.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38187739

RESUMEN

Short telomeres cause age-related disease and long telomeres predispose to cancer; however, the mechanisms regulating telomere length are unclear. To probe these mechanisms, we developed a nanopore sequencing method, Telomere Profiling, that is easy to implement, precise, and cost effective with broad applications in research and the clinic. We sequenced telomeres from individuals with short telomere syndromes and found similar telomere lengths to the clinical FlowFISH assay. We mapped telomere reads to specific chromosome end and identified both chromosome end-specific and haplotype-specific telomere length distributions. In the T2T HG002 genome, where the average telomere length is 5kb, we found a remarkable 6kb difference in lengths between some telomeres. Further, we found that specific chromosome ends were consistently shorter or longer than the average length across 147 individuals. The presence of conserved chromosome end-specific telomere lengths suggests there are new paradigms in telomere biology that are yet to be explored. Understanding the mechanisms regulating length will allow deeper insights into telomere biology that can lead to new approaches to disease.

3.
bioRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961464

RESUMEN

Histone deacetylases (HDACs) are pivotal in transcriptional regulation, and their dysregulation has been associated with various diseases including cancer. One of the critical roles of HDAC-containing complexes is the deacetylation of histone tails, which is canonically linked to transcriptional repression. Previous research has indicated that HDACs are recruited to cell-cycle gene promoters through the RB protein or the DREAM complex via SIN3B and that HDAC activity is essential for repressing G1/S and G2/M cell-cycle genes during cell-cycle arrest and exit. In this study, we sought to explore the interdependence of DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. We found that genetic knockout of SIN3B did not lead to derepression of cell-cycle genes in non-proliferating HCT116 and C2C12 cells. A combined loss of SIN3A and SIN3B resulted in a moderate upregulation in mRNA expression of several cell-cycle genes in arrested HCT116 cells, however, these effects appeared to be independent of DREAM or RB. Furthermore, HDAC inhibition did not induce a general upregulation of RB and DREAM target gene expression in arrested transformed or non-transformed cells. Our findings provide evidence that E2F:RB and DREAM complexes can repress cell-cycle genes without reliance on HDAC activity.

4.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37129010

RESUMEN

Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epitelio/metabolismo , Matriz Extracelular/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
5.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36135804

RESUMEN

Spermatogenesis is the process through which mature male gametes are formed and is necessary for the transmission of genetic information. While much work has established how sperm fate is promoted and maintained, less is known about how the sperm morphogenesis program is executed. We previously identified a novel role for the nuclear hormone receptor transcription factor, NHR-23, in promoting Caenorhabditis elegans spermatogenesis. The depletion of NHR-23 along with SPE-44, another transcription factor that promotes spermatogenesis, caused additive phenotypes. Through RNA-seq, we determined that NHR-23 and SPE-44 regulate distinct sets of genes. The depletion of both NHR-23 and SPE-44 produced yet another set of differentially regulated genes. NHR-23-regulated genes are enriched in phosphatases, consistent with the switch from genome quiescence to post-translational regulation in spermatids. In the parasitic nematode Ascaris suum, MFP1 and MFP2 control the polymerization of Major Sperm Protein, the molecule that drives sperm motility and serves as a signal to promote ovulation. NHR-23 and SPE-44 regulate several MFP2 paralogs, and NHR-23 depletion from the male germline caused defective localization of MSD/MFP1 and NSPH-2/MFP2. Although NHR-23 and SPE-44 do not transcriptionally regulate the casein kinase gene spe-6, a key regulator of sperm development, SPE-6 protein is lost following NHR-23+SPE-44 depletion. Together, these experiments provide the first mechanistic insight into how NHR-23 promotes spermatogenesis and an entry point to understanding the synthetic genetic interaction between nhr-23 and spe-44.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Femenino , Masculino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutación , Motilidad Espermática , Semen/metabolismo , Espermatogénesis/genética , Factores de Transcripción/genética
6.
Proc Natl Acad Sci U S A ; 119(40): e2209471119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161922

RESUMEN

The transmission of chromatin states from parent cells to daughter cells preserves cell-specific transcriptional states and thus cell identity through cell division. The mechanism that underpins this process is not fully understood. The role that chromatin states serve in transmitting gene expression information across generations via sperm and oocytes is even less understood. Here, we utilized a model in which Caenorhabditis elegans sperm and oocyte alleles were inherited in different states of the repressive mark H3K27me3. This resulted in the alleles achieving different transcriptional states within the nuclei of offspring. Using this model, we showed that sperm alleles inherited without H3K27me3 were sensitive to up-regulation in offspring somatic and germline tissues, and tissue context determined which genes were up-regulated. We found that the subset of sperm alleles that were up-regulated in offspring germlines retained the H3K27me3(-) state and were transmitted to grandoffspring as H3K27me3(-) and up-regulated epialleles, demonstrating that H3K27me3 can serve as a transgenerational epigenetic carrier in C. elegans.


Asunto(s)
Alelos , Caenorhabditis elegans , Epigénesis Genética , Histonas , Espermatozoides , Animales , Caenorhabditis elegans/genética , Cromatina/metabolismo , Histonas/genética , Masculino , Oocitos/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo
7.
Development ; 147(24)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33361089

RESUMEN

Transcriptomic approaches have provided a growing set of powerful tools with which to study genome-wide patterns of gene expression. Rapidly evolving technologies enable analysis of transcript abundance data from particular tissues and even single cells. This Primer discusses methods that can be used to collect and profile RNAs from specific tissues or cells, process and analyze high-throughput RNA-sequencing data, and define sets of genes that accurately represent a category, such as tissue-enriched or tissue-specific gene expression.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica/tendencias , ARN/genética , Transcriptoma/genética , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Especificidad de Órganos/genética
8.
Front Cell Dev Biol ; 8: 561791, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072747

RESUMEN

Chromatin regulators contribute to the maintenance of the germline transcriptional program. In the absence of SET-2, the Caenorhabditis elegans homolog of the SET1/COMPASS H3 Lys4 (H3K4) methyltransferase, animals show transgenerational loss of germline identity, leading to sterility. To identify transcriptional signatures associated with progressive loss of fertility, we performed expression profiling of set-2 mutant germlines across generations. We identify a subset of genes whose misexpression is first observed in early generations, a step we refer to as priming; their misexpression then further progresses in late generations, as animals reach sterility. Analysis of misregulated genes shows that down-regulation of germline genes, expression of somatic transcriptional programs, and desilencing of the X-chromosome are concurrent events leading to loss of germline identity in both early and late generations. Upregulation of transcription factor LIN-15B, the C/EBP homolog CEBP-1, and TGF-ß pathway components strongly contribute to loss of fertility, and RNAi inactivation of cebp-1 and TGF-ß/Smad signaling delays the onset of sterility, showing they individually contribute to maintenance of germ cell identity. Our approach therefore identifies genes and pathways whose misexpression actively contributes to the loss of germ cell fate. More generally, our data shows how loss of a chromatin regulator in one generation leads to transcriptional changes that are amplified over subsequent generations, ultimately leading to loss of appropriate cell fate.

9.
Nat Commun ; 10(1): 1271, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894520

RESUMEN

Paternal epigenetic inheritance is gaining attention for its growing medical relevance. However, the form in which paternal epigenetic information is transmitted to offspring and how it influences offspring development remain poorly understood. Here we show that in C. elegans, sperm-inherited chromatin states transmitted to the primordial germ cells in offspring influence germline transcription and development. We show that sperm chromosomes inherited lacking the repressive histone modification H3K27me3 are maintained in that state by H3K36me3 antagonism. Inheritance of H3K27me3-lacking sperm chromosomes results in derepression in the germline of somatic genes, especially neuronal genes, predominantly from sperm-inherited alleles. This results in germ cells primed for losing their germ cell identity and adopting a neuronal fate. These data demonstrate that histone modifications are one mechanism through which epigenetic information from a father can shape offspring gene expression and development.


Asunto(s)
Caenorhabditis elegans/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Herencia Paterna , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Diferenciación Celular , Cromatina/química , Cromatina/metabolismo , Embrión no Mamífero , Histonas/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Neuronas/citología , Neuronas/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Transcripción Genética
10.
Genetics ; 212(1): 125-140, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30910798

RESUMEN

Repression of germline-promoting genes in somatic cells is critical for somatic development and function. To study how germline genes are repressed in somatic tissues, we analyzed key histone modifications in three Caenorhabditis elegans synMuv B mutants, lin-15B, lin-35, and lin-37-all of which display ectopic expression of germline genes in the soma. LIN-35 and LIN-37 are members of the conserved DREAM complex. LIN-15B has been proposed to work with the DREAM complex but has not been shown biochemically to be a member of the complex. We found that, in wild-type worms, synMuv B target genes and germline genes are enriched for the repressive histone modification dimethylation of histone H3 on lysine 9 (H3K9me2) at their promoters. Genes with H3K9me2 promoter localization are evenly distributed across the autosomes, not biased toward autosomal arms, as are the broad H3K9me2 domains. Both synMuv B targets and germline genes display a dramatic reduction of H3K9me2 promoter localization in lin-15B mutants, but much weaker reduction in lin-35 and lin-37 mutants. This difference between lin-15B and DREAM complex mutants likely represents a difference in molecular function for these synMuv B proteins. In support of the pivotal role of H3K9me2 in regulation of germline genes by LIN-15B, global loss of H3K9me2 but not H3K9me3 results in phenotypes similar to synMuv B mutants, high-temperature larval arrest, and ectopic expression of germline genes in the soma. We propose that LIN-15B-driven enrichment of H3K9me2 at promoters of germline genes contributes to repression of those genes in somatic tissues.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Animales , Caenorhabditis elegans/metabolismo , Células Germinativas , Metilación
11.
Nat Commun ; 9(1): 4310, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333496

RESUMEN

Paternal contributions to epigenetic inheritance are not well understood. Paternal contributions via marked nucleosomes are particularly understudied, in part because sperm in some organisms replace the majority of nucleosome packaging with protamine packaging. Here we report that in Caenorhabditis elegans sperm, the genome is packaged in nucleosomes and carries a histone-based epigenetic memory of genes expressed during spermatogenesis, which unexpectedly include genes well known for their expression during oogenesis. In sperm, genes with spermatogenesis-restricted expression are uniquely marked with both active and repressive marks, which may reflect a sperm-specific chromatin signature. We further demonstrate that epigenetic information provided by sperm is important and in fact sufficient to guide proper germ cell development in offspring. This study establishes one mode of paternal epigenetic inheritance and offers a potential mechanism for how the life experiences of fathers may impact the development and health of their descendants.


Asunto(s)
Caenorhabditis elegans/metabolismo , Epigénesis Genética , Histonas/metabolismo , Nucleosomas/metabolismo , Espermatozoides/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Fertilidad , Masculino , Oogénesis , Espermatogénesis
12.
Mol Biol Cell ; 28(24): 3542-3553, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28904207

RESUMEN

Motor-dependent anterograde transport, a process that moves cytoplasmic components from sites of biosynthesis to sites of use within cells, is crucial in neurons with long axons. Evidence has emerged that multiple anterograde kinesins can contribute to some transport processes. To test the multi-kinesin possibility for a single vesicle type, we studied the functional relationships of axonal kinesins to dense core vesicles (DCVs) that were filled with a GFP-tagged neuropeptide in the Drosophila nervous system. Past work showed that Unc-104 (a kinesin-3) is a key anterograde DCV motor. Here we show that anterograde DCV transport requires the well-known mitochondrial motor Khc (kinesin-1). Our results indicate that this influence is direct. Khc mutations had specific effects on anterograde run parameters, neuron-specific inhibition of mitochondrial transport by Milton RNA interference had no influence on anterograde DCV runs, and detailed colocalization analysis by superresolution microscopy revealed that Unc-104 and Khc coassociate with individual DCVs. DCV distribution analysis in peptidergic neurons suggest the two kinesins have compartment specific influences. We suggest a mechanism in which Unc-104 is particularly important for moving DCVs from cell bodies into axons, and then Unc-104 and kinesin-1 function together to support fast, highly processive runs toward axon terminals.


Asunto(s)
Transporte Axonal/fisiología , Cinesinas/metabolismo , Neuropéptidos/metabolismo , Animales , Axones/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Cinesinas/genética , Neuronas/metabolismo , Neuropéptidos/fisiología , Terminales Presinápticos/metabolismo , Transporte de Proteínas/fisiología , Vesículas Secretoras/metabolismo , Vesículas Secretoras/fisiología
13.
PLoS Genet ; 13(5): e1006821, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28562665

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1006227.].

14.
Genetics ; 206(1): 163-178, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28258184

RESUMEN

The germ cells of multicellular organisms protect their developmental potential through specialized mechanisms. A shared feature of germ cells from worms to humans is the presence of nonmembrane-bound, ribonucleoprotein organelles called germ granules. Depletion of germ granules in Caenorhabditis elegans (i.e., P granules) leads to sterility and, in some germlines, expression of the neuronal transgene unc-119::gfp and the muscle myosin MYO-3 Thus, P granules are hypothesized to maintain germ cell totipotency by preventing somatic development, although the mechanism by which P granules carry out this function is unknown. In this study, we performed transcriptome and single molecule RNA-FISH analyses of dissected P granule-depleted gonads at different developmental stages. Our results demonstrate that P granules are necessary for adult germ cells to downregulate spermatogenesis RNAs and to prevent the accumulation of numerous soma-specific RNAs. P granule-depleted gonads that express the unc-119::gfp transgene also express many other genes involved in neuronal development and concomitantly lose expression of germ cell fate markers. Finally, we show that removal of either of two critical P-granule components, PGL-1 or GLH-1, is sufficient to cause germ cells to express UNC-119::GFP and MYO-3 and to display RNA accumulation defects similar to those observed after depletion of P granules. Our data identify P granules as critical modulators of the germline transcriptome and guardians of germ cell fate.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , ARN Helicasas DEAD-box/genética , Infertilidad/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Infertilidad/patología , Proteínas del Tejido Nervioso/biosíntesis , ARN/genética , ARN/metabolismo , Ribonucleoproteínas/genética , Espermatogénesis/genética , Transcriptoma/genética
15.
Proc Natl Acad Sci U S A ; 113(13): 3591-6, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976573

RESUMEN

The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage's immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2's long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2's long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2's long lifespan.


Asunto(s)
Caenorhabditis elegans/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Helminto , Mutación de Línea Germinal , Longevidad/genética , Interferencia de ARN , Receptor de Insulina/genética
16.
Nature ; 512(7515): 449-52, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164756

RESUMEN

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Animales , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , Replicación del ADN/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Anotación de Secuencia Molecular , Lámina Nuclear/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Especificidad de la Especie
17.
G3 (Bethesda) ; 4(1): 143-53, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24281426

RESUMEN

During animal development, gene transcription is tuned to tissue-appropriate levels. Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 (Maternal Effect Sterile-4) marks genes expressed in the germline with methylated lysine on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosome. The DRM transcription factor complex, named for its Dp/E2F, Retinoblastoma-like, and MuvB subunits, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 and the DRM subunit lin-54 oppositely skew the transcript levels of their common targets and cause sterility. A double mutant restores target gene transcript levels closer to wild type, and the concomitant loss of lin-54 suppresses the severe germline proliferation defect observed in mes-4 single mutants. Together, "yin-yang" regulation by MES-4 and DRM ensures transcript levels appropriate for germ-cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Cromosoma X/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Análisis por Micromatrices , Transactivadores/genética , Transactivadores/metabolismo , Cromosoma X/genética
18.
Cell Rep ; 2(5): 1169-77, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23103171

RESUMEN

The Caenorhabditis elegans MES proteins are key chromatin regulators of the germline. MES-2, MES-3, and MES-6 form the C. elegans Polycomb repressive complex 2 and generate repressive H3K27me3. MES-4 generates H3K36me3 on germline-expressed genes. Transcript profiling of dissected mutant germlines revealed that MES-2/3/6 and MES-4 cooperate to promote the expression of germline genes and repress the X chromosomes and somatic genes. Results from genome-wide chromatin immunoprecipitation showed that H3K27me3 and H3K36me3 occupy mutually exclusive domains on the autosomes and that H3K27me3 is enriched on the X. Loss of MES-4 from germline genes causes H3K27me3 to spread to germline genes, resulting in reduced H3K27me3 elsewhere on the autosomes and especially on the X. Our findings support a model in which H3K36me3 repels H3K27me3 from germline genes and concentrates it on other regions of the genome. This antagonism ensures proper patterns of gene expression for germ cells, which includes repression of somatic genes and the X chromosomes.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Células Germinativas/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genoma , Histonas/metabolismo , Metilación , Mutación , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo
19.
PLoS Genet ; 8(9): e1002933, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028348

RESUMEN

The Caenorhabditis elegans dosage compensation complex (DCC) equalizes X-chromosome gene dosage between XO males and XX hermaphrodites by two-fold repression of X-linked gene expression in hermaphrodites. The DCC localizes to the X chromosomes in hermaphrodites but not in males, and some subunits form a complex homologous to condensin. The mechanism by which the DCC downregulates gene expression remains unclear. Here we show that the DCC controls the methylation state of lysine 20 of histone H4, leading to higher H4K20me1 and lower H4K20me3 levels on the X chromosomes of XX hermaphrodites relative to autosomes. We identify the PR-SET7 ortholog SET-1 and the Suv4-20 ortholog SET-4 as the major histone methyltransferases for monomethylation and di/trimethylation of H4K20, respectively, and provide evidence that X-chromosome enrichment of H4K20me1 involves inhibition of SET-4 activity on the X. RNAi knockdown of set-1 results in synthetic lethality with dosage compensation mutants and upregulation of X-linked gene expression, supporting a model whereby H4K20me1 functions with the condensin-like C. elegans DCC to repress transcription of X-linked genes. H4K20me1 is important for mitotic chromosome condensation in mammals, suggesting that increased H4K20me1 on the X may restrict access of the transcription machinery to X-linked genes via chromatin compaction.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Compensación de Dosificación (Genética) , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Metiltransferasas/genética , Animales , Cromatina/genética , Trastornos del Desarrollo Sexual/genética , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , N-Metiltransferasa de Histona-Lisina/metabolismo , Masculino , Metilación , Interferencia de ARN , Cromosoma X/genética
20.
Nature ; 484(7395): 534-7, 2012 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-22495302

RESUMEN

Centromeres are chromosomal loci that direct segregation of the genome during cell division. The histone H3 variant CENP-A (also known as CenH3) defines centromeres in monocentric organisms, which confine centromere activity to a discrete chromosomal region, and holocentric organisms, which distribute centromere activity along the chromosome length. Because the highly repetitive DNA found at most centromeres is neither necessary nor sufficient for centromere function, stable inheritance of CENP-A nucleosomal chromatin is postulated to propagate centromere identity epigenetically. Here, we show that in the holocentric nematode Caenorhabditis elegans pre-existing CENP-A nucleosomes are not necessary to guide recruitment of new CENP-A nucleosomes. This is indicated by lack of CENP-A transmission by sperm during fertilization and by removal and subsequent reloading of CENP-A during oogenic meiotic prophase. Genome-wide mapping of CENP-A location in embryos and quantification of CENP-A molecules in nuclei revealed that CENP-A is incorporated at low density in domains that cumulatively encompass half the genome. Embryonic CENP-A domains are established in a pattern inverse to regions that are transcribed in the germline and early embryo, and ectopic transcription of genes in a mutant germline altered the pattern of CENP-A incorporation in embryos. Furthermore, regions transcribed in the germline but not embryos fail to incorporate CENP-A throughout embryogenesis. We propose that germline transcription defines genomic regions that exclude CENP-A incorporation in progeny, and that zygotic transcription during early embryogenesis remodels and reinforces this basal pattern. These findings link centromere identity to transcription and shed light on the evolutionary plasticity of centromeres.


Asunto(s)
Caenorhabditis elegans/genética , Centrómero/genética , Cromatina/genética , Células Germinativas/metabolismo , Transcripción Genética , Animales , Autoantígenos/metabolismo , Evolución Biológica , Caenorhabditis elegans/embriología , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Femenino , Fertilización , Regulación del Desarrollo de la Expresión Génica , Genoma de los Helmintos , Gónadas/citología , Gónadas/metabolismo , Organismos Hermafroditas , Masculino , Meiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...