Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 72(7): 619-628, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775654

RESUMEN

Air pollution from residential wood heating poses a significant public health risk and is a primary cause of PM nonattainment in some areas of the United States. Those emissions also play a role in regional haze and climate change. While regulatory programs have focused on emissions reductions from large facilities, the residential heating sector has received limited attention. The failure to develop effective programs to address this emission source hampers the ability of state and local air quality programs to meet clean air goals. An updated New Source Performance Standard (NSPS) for Residential Wood Heaters was promulgated in 2015, which includes more stringent emissions standards for wood stoves and broadens its scope to regulate additional types of wood heating appliances. However, weaknesses in the test methods and programs used to certify compliance with the NSPS limits hamper the efficacy of those requirements. Current emissions certification tests measure stove performance under defined laboratory conditions that (1) do not adequately reflect operation and performance of appliances in homes, (2) are not sufficiently repeatable to allow for comparison of emissions of different appliances, and (3) allow manufacturers leeway to modify critical test fueling and operating parameters which can significantly impact performance outcomes. These foundational regulatory issues present substantial challenges to promoting the cleanest and most efficient wood heating systems. This paper provides an overview of the air quality and public health impacts of residential wood heating and discusses the weaknesses in the current emission certification approaches and work by the Northeast States for Coordinated Air Use Management (NESCAUM) and the New York State Energy Research and Development Authority to develop improved testing methods. Other articles in this issue discuss the development and testing of those methods in detail.Implications: Air pollution from residential wood heating poses a significant public health risk and is a primary cause of PM nonattainment in some areas of the United States. Those emissions also play a role in regional haze and climate change. While regulatory programs have focused on emissions reductions from large facilities, the residential heating sector has received limited attention. The failure to develop effective programs to address this emission source hampers the ability of state and local air quality programs to meet clean air goals. This paper provides an overview of the issue.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Artículos Domésticos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Calefacción , Estados Unidos , Madera/química
2.
J Air Waste Manag Assoc ; 72(7): 679-699, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775656

RESUMEN

Many believe that certification testing of residential wood heat appliances should provide data indicative of installed performance. Operationally, test methods typically only assess steady-state emissions and fail to include other typical conditions for batch appliances such as start-up. From a fueling perspective, protocols should ensure a consistent approach reflecting common use practices. Ensuring representative conditions and accurate quantification of emissions requires assessing the impact of different start-up conditions and whether or not start-up conditions affect appliance operation during start-up and beyond. This study evaluated the impact of modifying fuel piece sizes and configurations using a "smart" wood-fired hydronic heater (WHH) cordwood appliance. The appliance represents technologies using software and oxygen sensors to improve performance. Since the study used a "smart" appliance, the results likely reflect the least amount of variability found in a WHH cordwood appliance. The analysis consisted of a series of tests that involved changing one fuel variable per series, including: (1) kindling fuel arrangement in the firebox; (2) fuel piece size; and (3) the amount of kindling and starter fuel used. A goal of the study was to determine how each variable affects emissions performance during start-up and the following steady state load. Testing used a dual-stage combustion cordwood WHH equipped with external thermal storage. Particulate matter (PM), carbon monoxide (CO), and delivered heating efficiency were measured, and visible emissions from the stack and secondary combustion chamber were observed. Replicate tests were conducted for each protocol series to evaluate WHH performance reproducibility. These tests found that for a low-mass staged combustion WHH with external thermal storage, the use of different fueling protocols can substantially affect PM and CO emissions.Implications: As test methods move to incorporate measurements beyond steady-state emissions, fueling protocols must be assessed to determine (1) if they reflect typical field procedures and (2) the impact of start-up procedures on the complete test run. This paper assessed how changing start-up conditions affected run variability and PM emission impacts.


Asunto(s)
Contaminantes Atmosféricos , Artículos Domésticos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Reproducibilidad de los Resultados , Madera/química
3.
J Air Waste Manag Assoc ; 72(7): 647-661, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775658

RESUMEN

Homeowners burn wood of a wide range of species and moisture content (MC) in residential cordwood and pellet stoves. An effective emission certification test protocol must account for and accurately measure the impact of those variables in order to ensure a reasonable correlation between laboratory results and in-use emissions and to promote the design and manufacture of cleaner burning appliances. This study explored the effect of wood species and MC on emissions and efficiency in four cordwood and four pellet stoves. PM emissions were consistently lower with pellets manufactured from softwood than for hardwood species and were highly correlated with ash content. Higher MC oak fuel substantially increased PM emissions in a non-catalytic cordwood stove; however, a hybrid cordwood stove was able to meet federal emissions limits even with the higher MC fuel. The results of this study, in combination with previous research, suggest that certification tests that use softwood fuel likely report lower emissions than tests that use hardwood. Requiring hardwood and higher MC cordwood fuel in certification tests would enable the assessment of an appliance's ability to operate well even when fuel conditions are not optimized.Implications: The emission testing results reported in this paper call into question the adequacy of the fuel moisture content and fuel species specifications in testing protocols approved for certifying compliance with EPA's New Source Performance Standards for cordwood and pellet stoves. We recommend changes in those specifications, including the prohibition of testing with Douglas fir and other low ash softwood species, requiring the use of cordwood test fuel with a higher moisture content, and requiring pellet stoves to be tested using hardwood pellets. Adoption of these measures would increase the replicability of tests. allow for the identification of stoves that are unlikely to perform well in the field when fuel conditions are not ideal, and, ultimately, result in the design of cleaner burning stoves.


Asunto(s)
Artículos Domésticos , Madera , Productos Domésticos
4.
J Air Waste Manag Assoc ; 72(7): 629-646, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775660

RESUMEN

The US Environmental Protection Agency's (EPA's) New Source Performance Standards (NSPS) for Residential Wood Heaters (RWH) require certification emission testing of prototype appliances. In 2015, EPA revised those standards to further reduce particulate matter emissions from this critical source. However, to achieve that goal, lower emissions measured in certification tests must reflect lower emissions when the appliance is operated in homes. Woodstove certification tests have used either the Federal Reference Method (FRM), a crib wood method, or a cordwood testing method developed by ASTM International that was designated as a broadly applicable Alternative Test Method (ATM) by the EPA until December 2021, when that status was revoked. There is broad agreement that the FRM and ASTM procedures do not simulate typical fueling and operating of wood stoves in the field, raising questions about the efficacy of the current program. Effective emission reduction efforts require robust, accurate, and reproducible test methods. With input from a range of stakeholders, the Northeast States for Coordinated Air Use Management (NESCAUM) developed the Integrated Duty Cycle Test Method for Certification of Wood-Fired Stoves Using Cordwood (IDC), a cordwood testing protocol designed to improve the efficacy of residential wood heater certification testing. That method was approved by EPA as a broadly applicable ATM in 2021. IDC test runs assess appliance performance under a range of operating and fueling conditions representative of typical consumer use patterns. Unlike previous test methods, the IDC protocol requires three replicate runs to assess appliance performance variability. Including variable fueling and operating conditions, along with the requirement for replicates runs, will increase the effectiveness of certification testing and promote the development of improved wood stove technology. This paper reports on experiments conducted to develop and test the IDC method.Implications: Residential wood heating is one of the largest sources of primary particulate matter pollution nationwide. EPA's New Source Performance Standards (NSPS) establish emission limits for this source category and require certification testing of prototype wood appliances to demonstrate compliance with those limits. However, the operating and fueling requirements in NSPS compliance testing protocols do not represent typical conditions in the field. We developed a new testing approach, the Integrated-Duty Cycle (IDC) Test Method, to address the shortcomings of current certification test approaches. The IDC procedure for cordwood stoves, which was approved by EPA as a broadly applicable alternative test method in 2021, assesses appliance operations over various operating and fueling conditions representing typical consumer use patterns in an integrated run and requires three replicate runs to enable the assessment of variability in stove performance. Stoves certified with this method will be equipped to meet the NSPS limits consistently in field operation.


Asunto(s)
Contaminantes Atmosféricos , Artículos Domésticos , Contaminantes Atmosféricos/análisis , Calefacción/métodos , Productos Domésticos , Material Particulado/análisis
5.
J Air Waste Manag Assoc ; 72(7): 662-678, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775661

RESUMEN

The U.S. Environmental Protection Agency (US EPA) requires residential wood heaters (RWHs) to meet particulate matter (PM) emission limits in order to lower ambient concentrations and reduce public exposure. The current US EPA dilution tunnel PM measurement methods for RWHs were developed several decades ago and use manual filter samples to generate a single PM value for tests that can last more than 12 hours for stoves and 30 hours for central heating appliances. This approach results in averaging periods of high and low emissions together and provides limited data on emissions over the entire burn profile. Over the last decade, the U.S. ambient fine particulate monitoring network has transitioned to the routine use of online automated methods. However, stationary source measurement methods have not made this transition. There are no substantial technical issues in implementing real-time automated methods to measure PM for RWH emission certification purposes. The Thermo Scientific Tapered Element Oscillating Microbalance (TEOM™) has been widely used for ambient PM measurements. It is a true inertial mass measurement with high time resolution and sensitivity. This work compares measurements obtained using a Thermo 1400 or 1405 TEOM with ASTM E2515 manual filter samples, the current US EPA Federal Reference Method, for 172 test runs across a wide range of stoves and PM loading conditions. The TEOM measurements used the same filter media, similar filter face velocities, and filter temperatures as manual methods. PM measurements were well correlated (R2 > 0.9), with TEOM values typically lower by 5% to 10%. TEOM data capture was high, with filter changes resulting in ~5 minutes of lost data, usually once or twice during a multi-hour test. We discuss differences between the two methods, such as post-sampling equilibration and measurement of PM on sample train surfaces (probe "catch"). We also provide examples of substantial non-water semi-volatile mass loss during sampling.Implications: Measurement methods for continuous PM and our understanding of their performance has dramatically improved over the last thirty years. Highly time-resolved measurements of PM from residential wood heating appliances in an appliance certification testing context provide additional insight into both appliance performance and the suitability of the test method to assess that performance. This continuous measurement approach offers new opportunities to replace traditional US regulatory PM sampling integrated manual source methods like ASTM E2515 or EPA Method 5G testing. For measurement of combustion products that can have a wide range of physical and chemical characteristics, the TEOM's actual mass measurement principle has advantages over the sensitivity of surrogate methods to different aerosols for use in a regulatory program. Although the TEOM is commonly used to measure ambient PM, it can readily be configured to meet the needs of continuous emission testing.


Asunto(s)
Artículos Domésticos , Material Particulado , Aerosoles/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Madera/química
6.
J Air Waste Manag Assoc ; 70(4): 393-409, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32039655

RESUMEN

A study was undertaken to identify patterns of consumer use of outdoor wood boilers or outdoor wood furnaces (technically referred to as outdoor wood-fired hydronic heaters (OWHHs)) and indoor wood stoves (IWSs) to inform the development of performance testing protocols that reflect real-life operating conditions. These devices are manually fed, and their usage protocols are a function of a number of variables, including user habits, household characteristics, and environmental factors. In this study, researchers logged the stack wall temperatures of 4 OWHH and 20 IWS units in the states of New York and Washington over two heating seasons. Stack wall temperature is an indicator of changes in combustion modes. Two algorithms were developed to identify usage modes and cold and warm start refueling events from the stack wall temperature time series. A linear correlation analysis was conducted to evaluate the effect of heat demand on usage patterns. The results and methods presented here will inform the cataloging of typical operational patterns of OWHHs and IWSs as a step in the development of performance testing procedures that represent actual in-home usage patterns.Implications: Current US regulatory programs for residential wood heating use a certification program to assess emissions and efficiency performance. Testing under this program uses a test that burns 100% of a single, standardized wood fuel charge to assess performance at different steady-state load conditions. This study assessed in-field operational patterns to determine if the current certification approach accurately characterized typical homeowner use patterns. The data from this study can be used to inform revisions to testing methods to increase certification test comparability between lab and field performance.


Asunto(s)
Calefacción/métodos , Madera , Algoritmos , New York , Estaciones del Año , Temperatura , Washingtón
7.
J Air Waste Manag Assoc ; 67(10): 1055-1060, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28837416

RESUMEN

The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfab filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions. IMPLICATIONS: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.


Asunto(s)
Filtros de Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Filtración/instrumentación , Material Particulado/análisis , Madera/análisis , Calefacción , Vivienda , Estados Unidos , United States Environmental Protection Agency
8.
Environ Res ; 156: 312-319, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28388517

RESUMEN

BACKGROUND: Biomass facilities have received increasing attention as a strategy to increase the use of renewable fuels and decrease greenhouse gas emissions from the electric generation and heating sectors, but these facilities can potentially increase local air pollution and associated health effects. Comparing the economic costs and public health benefits of alternative biomass fuel, heating technology, and pollution control technology options provides decision-makers with the necessary information to make optimal choices in a given location. METHODS: For a case study of a combined heat and power biomass facility in Syracuse, New York, we used stack testing to estimate emissions of fine particulate matter (PM2.5) for both the deployed technology (staged combustion pellet boiler with an electrostatic precipitator) and a conventional alternative (wood chip stoker boiler with a multicyclone). We used the atmospheric dispersion model AERMOD to calculate the contribution of either fuel-technology configuration to ambient primary PM2.5 in a 10km×10km region surrounding the facility, and we quantified the incremental contribution to population mortality and morbidity. We assigned economic values to health outcomes and compared the health benefits of the lower-emitting technology with the incremental costs. RESULTS: In total, the incremental annualized cost of the lower-emitting pellet boiler was $190,000 greater, driven by a greater cost of the pellet fuel and pollution control technology, offset in part by reduced fuel storage costs. PM2.5 emissions were a factor of 23 lower with the pellet boiler with electrostatic precipitator, with corresponding differences in contributions to ambient primary PM2.5 concentrations. The monetary value of the public health benefits of selecting the pellet-fired boiler technology with electrostatic precipitator was $1.7 million annually, greatly exceeding the differential costs even when accounting for uncertainties. Our analyses also showed complex spatial patterns of health benefits given non-uniform age distributions and air pollution levels. CONCLUSIONS: The incremental investment in a lower-emitting staged combustion pellet boiler with an electrostatic precipitator was well justified by the population health improvements over the conventional wood chip technology with a multicyclone, even given the focus on only primary PM2.5 within a small spatial domain. Our analytical framework could be generalized to other settings to inform optimal strategies for proposed new facilities or populations.


Asunto(s)
Contaminantes Atmosféricos/análisis , Biomasa , Calefacción/economía , Calefacción/instrumentación , Material Particulado/análisis , Análisis Costo-Beneficio , New York , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA