Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 30: 197-211, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026296

RESUMEN

Introduction: Photosystem II (PSII) protein complex plays an essential role in the entire photosynthesis process. Various known and unknown protein factors are involved in the dynamics of the PSII complex that need to be characterized in crop plants for enhancing photosynthesis efficiency and productivity. Objectives: The experiments were conducted to decipher the regulatory proteins involved in PSII dynamics of rice crop. Methods: A novel rice regulatory protein PAP90 (PSII auxiliary protein ~90 kDa) was characterized by generating a loss-of-function mutant pap90. The mutation was characterized at molecular level followed by various experiments to analyze the morphological, physiological and biochemical processes of mutant under control and abiotic stresses. Results: The pap90 mutant showed reduced photosynthesis due to D1 protein instability that subsequently causes inadequate accumulation of thylakoid membrane complexes, especially PSII and decreases PSII functional efficiency. Expression of OsFtsH family genes and proteins were induced in the mutant, which are known to play a key role in D1 protein degradation and turnover. The reduced D1 protein accumulation in the mutant increased the production of reactive oxygen species (ROS). The accumulation of ROS along with the increased activity of antioxidant enzymes and induced expression of stress-associated genes and proteins in pap90 mutant contributed to its water-limited stress tolerance ability. Conclusion: We propose that PAP90 is a key auxiliary protein that interacts with D1 protein and maintains its stability, thereby promoting subsequent assembly of the PSII and associated membrane complexes.


Asunto(s)
Oryza/genética , Complejo de Proteína del Fotosistema II/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Oryza/metabolismo , Fotosíntesis/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Estabilidad Proteica , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Tilacoides/genética
2.
Semin Cell Dev Biol ; 96: 100-106, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31055134

RESUMEN

Rice is a staple food crop, which ensures the calorie requirement of half of the world's population. With the continued increase in population, rice will play a key role in achieving the food security. However, in the constantly shrinking scenario of rice fields, the necessity of these extra grains of rice must be met by reducing the yield loss due to various abiotic and biotic stresses. The adverse effects of climate impact both quality and quantity of rice production. One of the most desirable applications of CRISPR/Cas technology would be to develop climate smart rice crop to sustain and enhance its productivity in the changing environment. In this review, we analyze the desirable phenotypes and responsible genetic factors, which can be utilized to develop tolerance against major abiotic stresses imposed by climate change through genome engineering. The possibility of utilizing the information from wild resources to engineer the corresponding alleles of cultivated rice has been presented. We have also shed light on available resources for generating genome edited rice lines. The CRISPR/Cas mediated genome editing strategies for engineering of novel genes were proposed to create a plant phenotype, which can face the adversities of climate change. Further, challenges of off-targets and undesirable phenotype were discussed.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Genoma de Planta/genética , Oryza/genética
3.
Plant Mol Biol ; 100(1-2): 59-71, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30796712

RESUMEN

KEY MESSAGE: RNAi mediated silencing of pectin degrading enzyme of R. solani gives a high level of resistance against sheath blight disease of rice. Rice sheath blight disease caused by Rhizoctonia solani Kuhn (telemorph; Thanatephorus cucumeris) is one of the most devastating fungal diseases which cause severe loss to rice grain production. In the absence of resistant cultivars, the disease is currently managed through fungicides which add to environmental pollution. To explore the potential of utilizing RNA interference (RNAi)-mediated resistance against sheath blight disease, we identified genes encoding proteins and enzymes involved in the RNAi pathway in this fungal pathogen. The RNAi target genes were deciphered by RNAseq analysis of a highly virulent strain of the R. solani grown in pectin medium. Additionally, pectin metabolism associated genes of R. solani were analyzed through transcriptome sequencing of infected rice tissues obtained from six diverse rice cultivars. One of the key candidate gene AG1IA_04727 encoding polygalacturonase (PG), which was observed to be significantly upregulated during infection, was targeted through RNAi to develop disease resistance. Stable expression of PG-RNAi construct in rice showed efficient silencing of AG1IA_04727 and suppression of sheath blight disease. This study highlights important information about the existence of RNAi machinery and key genes of R. solani which can be targeted through RNAi to develop pathogen-derived resistance, thus opening an alternative strategy for developing sheath blight-resistant rice cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/genética , Oryza/microbiología , Pectinas/farmacología , Enfermedades de las Plantas/microbiología , Interferencia de ARN , Rhizoctonia/genética , Transcriptoma/genética , Progresión de la Enfermedad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Enfermedades de las Plantas/genética , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rhizoctonia/efectos de los fármacos , Análisis de Secuencia de ARN , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...