Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(20): 14315-14325, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36200733

RESUMEN

The lifecycle of black carbon (BC)-containing particles from biomass burns is examined using aircraft and surface observations of the BC mixing state for plume ages from ∼15 min to 10 days. Because BC is nonvolatile and chemically inert, changes in the mixing state of BC-containing particles are driven solely by changes in particle coating, which is mainly secondary organic aerosol (SOA). The coating mass initially increases rapidly (kgrowth = 0.84 h-1), then remains relatively constant for 1-2 days as plume dilution no longer supports further growth, and then decreases slowly until only ∼30% of the maximum coating mass remains after 10 days (kloss = 0.011 h-1). The mass ratio of coating-to-core for a BC-containing particle with a 100 nm mass-equivalent diameter BC core reaches a maximum of ∼20 after a few hours and drops to ∼5 after 10 days of aging. The initial increase in coating mass can be used to determine SOA formation rates. The slow loss of coating material, not captured in global models, comprises the dominant fraction of the lifecycle of these particles. Coating-to-core mass ratios of BC particles in the stratosphere are much greater than those in the free troposphere indicating a different lifecycle.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/química , Monitoreo del Ambiente , Hollín
2.
Appl Opt ; 58(3): 650-669, 2019 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-30694252

RESUMEN

In early 2013, three airborne polarimeters were flown on the high altitude NASA ER-2 aircraft in California for the Polarimeter Definition Experiment (PODEX). PODEX supported the pre-formulation NASA Aerosol-Cloud-Ecosystem (ACE) mission, which calls for an imaging polarimeter in polar orbit (among other instruments) for the remote sensing of aerosols, oceans, and clouds. Several polarimeter concepts exist as airborne prototypes, some of which were deployed during PODEX as a capabilities test. Two of those instruments to date have successfully produced Level 1 (georegistered, calibrated radiance and polarization) data from that campaign: the Airborne Multiangle Spectropolarimetric Imager (AirMSPI) and the Research Scanning Polarimeter (RSP). We compared georegistered observations of a variety of scene types by these instruments to test whether Level 1 products agreed within stated uncertainties. Initial comparisons found radiometric agreement, but polarimetric biases beyond measurement uncertainties. After subsequent updates to calibration, georegistration, and the measurement uncertainty models, observations from the instruments now largely agree within stated uncertainties. However, the 470 nm reflectance channels have a roughly +6% bias of AirMSPI relative to RSP, beyond expected measurement uncertainties. We also find that observations of dark (ocean) scenes, where polarimetric uncertainty is expected to be largest, do not agree within stated polarimetric uncertainties. Otherwise, AirMSPI and RSP observations are consistent within measurement uncertainty expectations, providing credibility for the subsequent creation of Level 2 (geophysical product) data from these instruments, and comparison thereof. The techniques used in this work can also form a methodological basis for other intercomparisons, for example, of the data gathered during the recent Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign, carried out in October and November of 2017 with four polarimeters (including AirMSPI and RSP).

3.
Appl Opt ; 46(22): 5263-75, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17676140

RESUMEN

We present modeled aerosol optical properties (single scattering albedo, asymmetry parameter, and lidar ratio) in two layers with different aerosol loadings and particle sizes, observed during the Southern African Regional Science Initiative 2,000 (SAFARI 2,000) campaign. The optical properties were calculated from aerosol size distributions retrieved from aerosol layer optical thickness spectra, measured using the NASA Ames airborne tracking 14-channel sunphotometer (AATS-14) and the refractive index based on the available information on aerosol chemical composition. The study focuses on sensitivity of modeled optical properties in the 0.3-1.5 microm wavelength range to assumptions regarding the mixing scenario. We considered two models for the mixture of absorbing and nonabsorbing aerosol components commonly used to model optical properties of biomass burning aerosol: a layered sphere with absorbing core and nonabsorbing shell and the Maxwell-Garnett effective medium model. In addition, comparisons of modeled optical properties with the measurements are discussed. We also estimated the radiative effect of the difference in aerosol absorption implied by the large difference between the single scattering albedo values (approximately 0.1 at midvisible wavelengths) obtained from different measurement methods for the case with a high amount of biomass burning particles. For that purpose, the volume fraction of black carbon was varied to obtain a range of single scattering albedo values (0.81-0.91 at lambda=0.50 microm). The difference in absorption resulted in a significant difference in the instantaneous radiative forcing at the surface and the top of the atmosphere (TOA) and can result in a change of the sign of the aerosol forcing at TOA from negative to positive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA