Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578235

RESUMEN

Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.


Asunto(s)
Endosomas , ATPasas de Translocación de Protón Vacuolares , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Endosomas/metabolismo , Concentración de Iones de Hidrógeno , Humanos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Lisosomas/metabolismo , Células HeLa , Transporte de Proteínas , Receptor IGF Tipo 2/metabolismo , Receptor IGF Tipo 2/genética , Animales , Proteínas Adaptadoras Transductoras de Señales
2.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659754

RESUMEN

Microtubule-based spindle formation is essential to faithful chromosome segregation during cell division. In many animal species, the oocyte meiotic spindle forms without centrosomes, unlike most mitotic cells. Even in mitotic cells, centrosomes are sometimes dispensable for bipolar spindle formation. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in C. elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly was normal after auxin-induced degradation of Ran-GEF but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown as well as in the spindle region during metaphase I and metaphase II. Through light and electron microscopy we found that the concentration of soluble tubulin in the metaphase II spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules from the meiotic spindle. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes. We present data supporting a model in which cytoplasmic organelles exclude cytoplasmic volume to drive concentration of tubulin within the nuclear/spindle envelope.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38450962

RESUMEN

The accurate segregation of chromosomes during female meiosis relies on the precise assembly and function of the meiotic spindle, a dynamic structure primarily composed of microtubules. Despite the crucial role of microtubule dynamics in this process, the relationship between microtubule length and spindle size remains elusive. Leveraging Caenorhabditis elegans as a model system, we combined electron tomography and live imaging to investigate this correlation. Our analysis revealed significant changes in spindle length throughout meiosis, coupled with alterations in microtubule length. Surprisingly, while spindle size decreases during the initial stages of anaphase, the size of antiparallel microtubule overlap decreased as well. Detailed electron tomography shows a positive correlation between microtubule length and spindle size, indicating a role of microtubule length in determining spindle dimensions. Notably, microtubule numbers displayed no significant association with spindle length, highlighting the dominance of microtubule length regulation in spindle size determination. Depletion of the microtubule depolymerase KLP-7 led to elongated metaphase spindles with increased microtubule length, supporting the link between microtubule length and spindle size. These findings underscore the pivotal role of regulating microtubule dynamics, and thus microtubule length, in governing spindle rearrangements during meiotic division, shedding light on fundamental mechanisms dictating spindle architecture.

4.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538595

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Asunto(s)
Toxoplasma , Vacuolas , Animales , Humanos , Ratones , Interferones/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Toxoplasma/metabolismo , Vacuolas/metabolismo
5.
J Biol Chem ; 300(3): 105669, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272221

RESUMEN

The mitotic spindle contains many bundles of microtubules (MTs) including midzones and kinetochore fibers, but little is known about how bundled structures are formed. Here, we show that the chromosomal passenger complex (CPC) purified from Escherichia coli undergoes liquid-liquid demixing in vitro. An emergent property of the resultant condensates is to generate parallel MT bundles when incubated with free tubulin and GTP in vitro. We demonstrate that MT bundles emerge from CPC droplets with protruding minus ends that then grow into long and tapered MT structures. During this growth, we found that the CPC in these condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for liquid-liquid demixing or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data demonstrate that an in vitro biochemical activity to produce MT bundles emerges after the concentration of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle. Moreover, these data suggest that cells contain MT-organizing centers that generate MT bundles that emerge with the opposite polarity from centrosomes.


Asunto(s)
Cromosomas , Microtúbulos , Huso Acromático , Humanos , Células HeLa , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Animales , Xenopus laevis
6.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289985

RESUMEN

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Asunto(s)
Hipertensión , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular , Proliferación Celular/fisiología , Conexinas/metabolismo , Peróxido de Hidrógeno/farmacología , Obesidad , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo
7.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961478

RESUMEN

Recent studies have highlighted the significance of the spindle midzone - the region positioned between chromosomes - in ensuring proper chromosome segregation. By combining advanced 3D electron tomography and cutting-edge light microscopy we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and the chromokinesin KLP-19 in C. elegans suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length and turn-over of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length in the spindle midzone, which also leads to increased microtubule - microtubule interaction, thus building up a more robust microtubule network. The spindle is globally stiffer and more stable, which has implications for the transmission of forces within the spindle affecting chromosome segregation dynamics. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.

8.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37684042

RESUMEN

In metazoans, Polo-like kinase (PLK1) controls several mitotic events including nuclear envelope breakdown, centrosome maturation, spindle assembly and progression through mitosis. Here we show that a mutation in the mitochondria-localized protein SPD-3 affects mitotic events by inducing elevated levels of PLK-1 in early Caenorhabditis elegans embryos. SPD-3 mutant embryos contain abnormally positioned mitotic chromosomes, show a delay in anaphase onset and asymmetrically disassemble the nuclear lamina. We found that more PLK-1 accumulated on centrosomes, nuclear envelope, nucleoplasm, and chromatin before NEBD, suggesting that PLK-1 overexpression is responsible for some of the observed mitotic phenotypes. In agreement with this, the chromosome positioning defects of the spd-3(oj35) mutant could be rescued by reducing PLK-1 levels. Our data suggests that the mitochondrial SPD-3 protein affects chromosome positioning and nuclear envelope integrity by up-regulating the endogenous levels of PLK-1 during early embryogenesis in C. elegans This finding suggests a novel link between mitochondria and nuclear envelope dynamics and chromosome positioning by increasing the amount of a key mitotic regulator, PLK-1, providing a novel link between mitochondria and mitosis.


Asunto(s)
Caenorhabditis elegans , Proteínas Mitocondriales , Animales , Caenorhabditis elegans/genética , Ciclo Celular , Mitosis/genética , Núcleo Celular
9.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398226

RESUMEN

Cilia regeneration is a physiological event, and while studied extensively in unicellular organisms, it remains poorly understood in vertebrates. In this study, using Xenopus multiciliated cells (MCCs) as a model, we demonstrate that, unlike unicellular organisms, deciliation removes the transition zone (TZ) along with the ciliary axoneme. While MCCs immediately begin the regeneration of the ciliary axoneme, surprisingly, the assembly of TZ was delayed. Instead, ciliary tip proteins, Sentan and Clamp, were the first to localize to regenerating cilia. Using cycloheximide (CHX) to block new protein synthesis, we show that the TZ protein B9d1 is not a component of the cilia precursor pool and requires new transcription/translation providing insights into the delayed repair of TZ. Moreover, CHX treatment led MCCs to assemble fewer (~ ten compared to ~150 in controls) but about wild-type length (78% of WT) cilia by gradually concentrating ciliogenesis proteins like IFT43 at a select few basal bodies, highlighting the exciting possibility of protein transport between basal bodies to facilitate faster regeneration in cells with multiple cilia. In summary, we demonstrate that MCCs begin regeneration with the assembly of ciliary tip and axoneme followed by TZ, questioning the importance of TZ in motile ciliogenesis.

10.
Cells ; 12(10)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37408187

RESUMEN

Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Mutación , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/farmacología
12.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711457

RESUMEN

In metazoans, Polo Kinase (Plk1) controls several mitotic events including nuclear envelope breakdown, centrosome maturation and kinetochore assembly. Here we show that mitotic events regulated by Polo Like Kinase (PLK-1) in early C. elegans embryos depend on the mitochondrial-localized protein SPD-3. spd-3 mutant one-cell embryos contain abnormally positioned mitotic chromosomes and prematurely and asymmetrically disassemble the nuclear lamina. Nuclear envelope breakdown (NEBD) in C. elegans requires direct dephosphorylation of lamin by PLK-1. In spd-3 mutants PLK-1 levels are ~6X higher in comparison to control embryos and PLK-1::GFP was highly accumulated at centrosomes, the nuclear envelope, nucleoplasm, and chromosomes prior to NEBD. Partial depletion of plk-1 in spd-3 mutant embryos rescued mitotic chromosome and spindle positioning defects indicating that these phenotypes result from higher PLK-1 levels and thus activity. Our data suggests that the mitochondrial SPD-3 protein controls NEBD and chromosome positioning by regulating the endogenous levels of PLK-1 during early embryogenesis in C. elegans . This finding suggests a novel link between mitochondria and mitotic events by controlling the amount of a key mitotic regulator, PLK-1 and thus may have further implications in the context of cancers or age-related diseases and infertility as it provides a novel link between mitochondria and mitosis.

13.
Elife ; 112022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852146

RESUMEN

The nuclear envelope (NE) assembles and grows from bilayer lipids produced at the endoplasmic reticulum (ER). How ER membrane incorporation coordinates with assembly of nuclear pore complexes (NPCs) to generate a functional NE is not well understood. Here, we use the stereotypical first division of the early C. elegans embryo to test the role of the membrane-associated nucleoporin Ndc1 in coupling NPC assembly to NE formation and growth. 3D-EM tomography of reforming and expanded NEs establishes that Ndc1 determines NPC density. Loss of ndc1 results in faster turnover of the outer scaffold nucleoporin Nup160 at the NE, providing an explanation for how Ndc1 controls NPC number. NE formation fails in the absence of both Ndc1 and the inner ring component Nup53, suggesting partially redundant roles in NPC assembly. Importantly, upregulation of membrane synthesis restored the slow rate of nuclear growth resulting from loss of ndc1 but not from loss of nup53. Thus, membrane biogenesis can be decoupled from Ndc1-mediated NPC assembly to promote nuclear growth. Together, our data suggest that Ndc1 functions in parallel with Nup53 and membrane biogenesis to control NPC density and nuclear size.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Poro Nuclear , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo
14.
J Microsc ; 284(1): 25-44, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110027

RESUMEN

We present a software-assisted workflow for the alignment and matching of filamentous structures across a three-dimensional (3D) stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After the computation of an initial automatic matching, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labour. The software tool was developed in an interdisciplinary collaboration between computer scientists and cell biologists to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite dealing with imperfect data related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time-consuming. Furthermore, an interactive visualisation of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialised, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. To the best of our knowledge, it is the only currently available tool which is able to process data of the type and size presented here. The key to our solution is a careful design of the visualisation and interaction tools for each processing step to guarantee real-time response, and an optimised workflow that efficiently guides the user through datasets. The final solution presented here is the result of an iterative process with tight feedback loops between the involved computer scientists and cell biologists. LAY DESCRIPTION: Electron tomography of biological samples is used for a three-dimensional (3D) reconstruction of filamentous structures, such as microtubules (MTs) in mitotic and meiotic spindles. Large-scale electron tomography can be applied to increase the reconstructed volume for the visualisation of full spindles. For this, each spindle is cut into a series of semi-thick physical sections, from which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. Previously, we presented fully automatic approaches for this 3D reconstruction pipeline. However, large volumes often suffer from imperfections (ie physical distortions) caused by the image acquisition process, making it difficult to apply fully automatic approaches for matching and stitching of numerous tomograms. Therefore, we developed an interactive, semi-automatic solution that considers all requirements for large-scale stitching of microtubules in image stacks of consecutive sections. We achieved this by combining automatic methods, visual validation and interactive error correction, thus allowing the user to continuously improve the result by interactively correcting landmarks or matches of filaments. We present large-scale reconstructions of spindles in which the automatic workflow failed and where different steps of manual corrections were needed. Our approach is also applicable to other biological samples showing 3D distributions of MTs in a number of different cellular contexts.


Asunto(s)
Tomografía con Microscopio Electrónico , Huso Acromático , Tomografía/instrumentación , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador/instrumentación , Imagenología Tridimensional , Microtúbulos , Programas Informáticos
15.
Elife ; 102021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34114562

RESUMEN

Most female meiotic spindles undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of meiotic spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic Caenorhabditis elegans spindles. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over within seconds. The results show that the metaphase to anaphase transition correlates with an increase in microtubule numbers and a decrease in their average length. Detailed analysis of the tomographic data revealed that the microtubule length changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the spindle reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe. This suggests that the most prominent drivers of spindle rearrangements are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on katanin.


Asunto(s)
Caenorhabditis elegans/metabolismo , Meiosis , Microtúbulos/metabolismo , Oocitos/metabolismo , Huso Acromático/metabolismo , Anafase , Animales , Teorema de Bayes , Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Cromosomas/metabolismo , Tomografía con Microscopio Electrónico/métodos , Femenino , Katanina/metabolismo , Metafase , Modelos Teóricos
16.
Semin Cell Dev Biol ; 107: 91-102, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32747191

RESUMEN

During mitosis microtubules self-organize to form a bipolar mitotic spindle structure, which positions the sister chromatids on the spindle mid-plane and separates them afterwards. Previous studies have identified many spindle associated proteins. Yet, we do not fully understand how these nanoscopic proteins lead to force generation through interactions of individual microtubules, motor proteins and chromosomes, and how a large number of these local interactions ultimately determine the structure and mechanics of the spindle in micron scale. Here we review the current understanding and open questions related to the structure and mechanics of the mitotic spindle. We then discuss how a combination of electron microscopy and computational modeling can be used to tackle some of these open questions.


Asunto(s)
Huso Acromático/metabolismo , Animales , Fenómenos Biomecánicos , Humanos , Modelos Biológicos , Polimerizacion , Reología , Huso Acromático/ultraestructura
17.
Front Cell Dev Biol ; 8: 620111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425928
18.
J Cell Biol ; 218(12): 3977-3985, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31636117

RESUMEN

During mitosis, the centrosome expands its capacity to nucleate microtubules. Understanding the mechanisms of centrosomal microtubule nucleation is, however, constrained by a lack of knowledge of the amount of soluble and polymeric tubulin at mitotic centrosomes. Here we combined light microscopy and serial-section electron tomography to measure the amount of dimeric and polymeric tubulin at mitotic centrosomes in early C. elegans embryos. We show that a C. elegans one-cell stage centrosome at metaphase contains >10,000 microtubules with a total polymer concentration of 230 µM. Centrosomes concentrate soluble α/ß tubulin by about 10-fold over the cytoplasm, reaching peak values of 470 µM, giving a combined total monomer and polymer tubulin concentration at centrosomes of up to 660 µM. These findings support in vitro data suggesting that microtubule nucleation in C. elegans centrosomes is driven in part by concentrating soluble tubulin.


Asunto(s)
Caenorhabditis elegans/química , Centrosoma/química , Mitosis , Tubulina (Proteína)/química , Animales , Centrosoma/ultraestructura , Citoplasma/química , Dimerización , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Metafase , Microscopía Electrónica , Microtúbulos/química , Nocodazol/farmacología , Polímeros/química , Interferencia de ARN , Solubilidad
19.
Mol Biol Cell ; 30(19): 2503-2514, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31339442

RESUMEN

Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.


Asunto(s)
Segregación Cromosómica/fisiología , Huso Acromático/metabolismo , Polos del Huso/metabolismo , Anafase/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Línea Celular Tumoral , Segregación Cromosómica/genética , Cromosomas/genética , Cromosomas/fisiología , Humanos , Cinetocoros/metabolismo , Meiosis/genética , Microtúbulos/metabolismo , Huso Acromático/genética , Polos del Huso/genética
20.
Curr Opin Struct Biol ; 58: 269-277, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31279499

RESUMEN

The organization of microtubules in spindles is complex and not fully understood. Here we report on current advances in generating 3D reconstructions of staged spindles by serial-section electron tomography, exemplified by the first mitotic spindle in early Caenorhabditis elegans embryo. We then review how advances in correlative light microscopy and quantitative electron tomography enable the development of theory and stochastic simulations, which describe how the microtubule organization in spindles emerges from their dynamics. We show how theory and simulations can be used to address long-standing questions in cell division research, advancing the field beyond a pure structural description of microtubules in spindles.


Asunto(s)
Imagenología Tridimensional/métodos , Huso Acromático/metabolismo , Animales , Microscopía Electrónica , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Huso Acromático/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...