Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1393237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050893

RESUMEN

In animals, pigments but also nanostructures determine skin coloration, and many shades are produced by combining both mechanisms. Recently, we discovered a new mechanism for blue coloration in the ribbontail stingray Taeniura lymma, a species with electric blue spots on its yellow-brown skin. Here, we characterize finescale differences in cell composition and architecture distinguishing blue from non-blue regions, the first description of elasmobranch chromatophores and the nanostructures responsible for the stingray's novel structural blue, contrasting with other known mechanisms for making nature's rarest color. In blue regions, the upper dermis comprised a layer of chromatophore units -iridophores and melanophores entwined in compact clusters framed by collagen bundles- this structural stability perhaps the root of the skin color's robustness. Stingray iridophores were notably different from other vertebrate light-reflecting cells in having numerous fingerlike processes, which surrounded nearby melanophores like fists clenching a black stone. Iridophores contained spherical iridosomes enclosing guanine nanocrystals, suspended in a 3D quasi-order, linked by a cytoskeleton of intermediate filaments. We argue that intermediate filaments form a structural scaffold with a distinct optical role, providing the iridosome spacing critical to produce the blue color. In contrast, black-pigmented melanosomes within melanophores showed space-efficient packing, consistent with their hypothesized role as broadband-absorbers for enhancing blue color saturation. The chromatophore layer's ultrastructure was similar in juvenile and adult animals, indicating that skin color and perhaps its ecological role are likely consistent through ontogeny. In non-blue areas, iridophores were replaced by pale cells, resembling iridophores in some morphological and nanoscale features, but lacking guanine crystals, suggesting that the cell types arise from a common progenitor cell. The particular cellular associations and structural interactions we demonstrate in stingray skin suggest that pigment cells induce differentiation in the progenitor cells of iridophores, and that some features driving color production may be shared with bony fishes, although the lineages diverged hundreds of millions of years ago and the iridophores themselves differ drastically.

2.
Cell Biol Int ; 48(5): 682-694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420874

RESUMEN

Polycladida are the only free-living flatworms with a planktonic larval stage in some species. Currently, it is not clear if a larval stage is ancestral in polyclads, and which type of larva that would be. Known polyclad larvae are Müller's larva, Kato's larva and Goette's larva, differing by body shape and the number of lobes and eyes. A valuable character for the comparison and characterisation of polyclad larval types is the ultrastructural composition of the apical organ. This organ is situated at the anterior pole of the larva and is associated with at least one ciliary tuft. The larval apical organ of Theama mediterranea features two multiciliated apical tuft sensory cells. Six unfurcated apical tuft gland cell necks are sandwiched between the apical tuft sensory cells and two anchor cells and have their cell bodies located lateral to the brain. Another type of apical gland cell necks is embedded in the anchor cells. Ventral to the apical tuft, ciliated sensory neurons are present, which are neighbouring the cell necks of two furcated apical tuft gland cells. Based on the ultrastructural organisation of the apical organ and other morphological features, like a laterally flattened wedge-shaped body and three very small lobes, we recognise the larva of T. mediterranea as a new larval type, which we name Curini-Galletti's larva after its first discoverer. The ultrastructural similarities of the apical organ in different polyclad larvae support their possible homology, that is, all polyclad larvae have likely evolved from a common larva.


Asunto(s)
Larva , Animales
3.
iScience ; 26(3): 106291, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36936784

RESUMEN

Nematocysts are generated by secretion of proteins into a post-Golgi compartment. They consist of a capsule that elongates into a long tube, which is coiled inside the capsule matrix and expelled during its nano-second discharge deployed for prey capture. The driving force for discharge is an extreme osmotic pressure of 150 bar. The complex processes of tube elongation and invagination under these biomechanical constraints have so far been elusive. Here, we show that a non-muscle myosin II homolog (HyNMII) is essential for nematocyst formation in Hydra. In early nematocysts, HyNMII assembles to a collar around the neck of the protruding tube. HyNMII then facilitates tube outgrowth by compressing it along the longitudinal axis as evidenced by inhibitor treatment and genetic knockdown. In addition, live imaging of a NOWA::NOWA-GFP transgenic line, which re-defined NOWA as a tube component facilitating invagination, allowed us to analyze the impact of HyNMII on tube maturation.

4.
Development ; 148(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33298460

RESUMEN

Primordial germ cells (PGCs) are the precursors of germ cells, which migrate to the genital ridge during early development. Relatively little is known about PGCs after their migration. We studied this post-migratory stage using microscopy and sequencing techniques, and found that many PGC-specific genes, including genes known to induce PGC fate in the mouse, are only activated several days after migration. At this same time point, PGC nuclei become extremely gyrated, displaying general broad opening of chromatin and high levels of intergenic transcription. This is accompanied by changes in nuage morphology, expression of large loci (PGC-expressed non-coding RNA loci, PERLs) that are enriched for retro-transposons and piRNAs, and a rise in piRNA biogenesis signatures. Interestingly, no nuclear Piwi protein could be detected at any time point, indicating that the zebrafish piRNA pathway is fully cytoplasmic. Our data show that the post-migratory stage of zebrafish PGCs holds many cues to both germ cell fate establishment and piRNA pathway activation.


Asunto(s)
Núcleo Celular/genética , Células Germinativas/metabolismo , Transcripción Genética , Pez Cebra/genética , Animales , Núcleo Celular/ultraestructura , Elementos Transponibles de ADN/genética , ADN Intergénico/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Fertilización , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Células Germinativas/ultraestructura , Mutación/genética , ARN Interferente Pequeño/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Regulación hacia Arriba/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Cigoto/metabolismo
5.
Dev Cell ; 46(3): 285-301.e9, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30086300

RESUMEN

Phase separation represents an important form of subcellular compartmentalization. However, relatively little is known about how the formation or disassembly of such compartments is regulated. In zebrafish, the Balbiani body (Bb) and the germ plasm (Gp) are intimately linked phase-separated structures essential for germ cell specification and home to many germ cell-specific mRNAs and proteins. Throughout development, these structures occur as a single large aggregate (Bb), which disperses throughout oogenesis and upon fertilization accumulates again into relatively large assemblies (Gp). Formation of the Bb requires Bucky ball (Buc), a protein with prion-like properties. We found that the multi-tudor domain-containing protein Tdrd6a interacts with Buc, affecting its mobility and aggregation properties. Importantly, lack of this regulatory interaction leads to significant defects in germ cell development. Our work presents insights into how prion-like protein aggregations can be regulated and highlights the biological relevance of such regulatory events.


Asunto(s)
Células Germinativas/metabolismo , Oocitos/metabolismo , Oogénesis/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Citoplasma/metabolismo , Orgánulos/metabolismo , ARN Mensajero/metabolismo , Pez Cebra
6.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29769402

RESUMEN

Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte-specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C-terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf-1 and characterized it in the context of the sRNA pathways of C. elegans We report that GTSF-1 is not required for Piwi-mediated gene silencing. Instead, gtsf-1 mutants show a striking depletion of 26G-RNAs, a class of endogenous sRNAs, fully phenocopying rrf-3 mutants. We show, both in vivo and in vitro, that GTSF-1 interacts with RRF-3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF-1 is required for the assembly of a larger RRF-3 and DCR-1-containing complex (ERIC), thereby allowing for 26G-RNA generation. We propose that GTSF-1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA-mediated silencing activities.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Silenciador del Gen , ARN de Helminto/biosíntesis , ARN no Traducido/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Mutación , ARN de Helminto/genética , ARN no Traducido/genética , ARN Polimerasa Dependiente del ARN/genética
7.
Proc Natl Acad Sci U S A ; 112(47): 14635-40, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26561583

RESUMEN

During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Cromosomas de los Mamíferos/metabolismo , Microscopía/métodos , Fase Paquiteno , Animales , Centrómero/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Modelos Biológicos , Complejo Sinaptonémico/metabolismo , Transcripción Genética
8.
EMBO J ; 30(16): 3298-308, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21743441

RESUMEN

Piwi proteins function in an RNAi-like pathway that silences transposons. Piwi-associated RNAs, also known as piRNAs, act as a guide to identify Piwi targets. The tudor domain-containing protein Tdrd1 has been linked to this pathway but its function has thus far remained unclear. We show that zebrafish Tdrd1 is required for efficient Piwi-pathway activity and proper nuage formation. Furthermore, we find that Tdrd1 binds both zebrafish Piwi proteins, Ziwi and Zili, and reveals sequence specificity in the interaction between Tdrd1 tudor domains and symmetrically dimethylated arginines (sDMAs) in Zili. Finally, we show that Tdrd1 complexes contain piRNAs and RNA molecules that are longer than piRNAs. We name these longer transcripts Tdrd1-associated transcripts (TATs). TATs likely represent cleaved Piwi pathway targets and may serve as piRNA biogenesis intermediates. Altogether, our data suggest that Tdrd1 acts as a molecular scaffold for Piwi proteins, bound through specific tudor domain-sDMA interactions, piRNAs and piRNA targets.


Asunto(s)
Chaperonas Moleculares/fisiología , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/metabolismo , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Elementos Transponibles de ADN/genética , Femenino , Sustancias Macromoleculares , Masculino , Oocitos/metabolismo , Oocitos/ultraestructura , Ovario/metabolismo , Mapeo de Interacción de Proteínas , Interferencia de ARN , Proteínas de Unión al ARN/química , Fracciones Subcelulares/metabolismo , Testículo/metabolismo , Transcripción Genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
9.
EMBO J ; 29(21): 3688-700, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-20859253

RESUMEN

Piwi-interacting RNAs (piRNAs) are germ line-specific small RNA molecules that have a function in genome defence and germ cell development. They associate with a specific class of Argonaute proteins, named Piwi, and function through an RNA interference-like mechanism. piRNAs carry a 2'-O-methyl modification at their 3' end, which is added by the Hen1 enzyme. We show that zebrafish hen1 is specifically expressed in germ cells and is essential for maintaining a female germ line, whereas it is dispensable in the testis. Hen1 protein localizes to nuage through its C-terminal domain, but is not required for nuage formation. In hen1 mutant testes, piRNAs become uridylated and adenylated. Uridylation frequency is highest on retro-transposon-derived piRNAs and is accompanied by decreased piRNA levels and mild derepression of transposon transcripts. Altogether, our data suggest the existence of a uridylation-mediated 3'-5' exonuclease activity acting on piRNAs in zebrafish germ cells, which is counteracted by nuage-bound Hen1 protein. This system discriminates between piRNA targets and is required for ovary development and fully efficient transposon silencing.


Asunto(s)
Metiltransferasas/metabolismo , Oocitos/citología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Uridina/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Northern Blotting , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Inmunoprecipitación , Hibridación in Situ , Masculino , Metiltransferasas/fisiología , Datos de Secuencia Molecular , Mutación/genética , Oocitos/metabolismo , Procesamiento de Término de ARN 3'/fisiología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Retroelementos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Fracciones Subcelulares , Testículo/citología , Testículo/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA