Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993355

RESUMEN

Growth factors and cytokines signal by binding to the extracellular domains of their receptors and drive association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affects signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo designed fibroblast growth-factor receptor (FGFR) binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and MAPK pathway activation. The high specificity of the designed agonists reveal distinct roles for two FGFR splice variants in driving endothelial and mesenchymal cell fates during early vascular development. The ability to incorporate receptor binding domains and repeat extensions in a modular fashion makes our designed scaffolds broadly useful for probing and manipulating cellular signaling pathways.

2.
Nat Commun ; 12(1): 2294, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863889

RESUMEN

A systematic and robust approach to generating complex protein nanomaterials would have broad utility. We develop a hierarchical approach to designing multi-component protein assemblies from two classes of modular building blocks: designed helical repeat proteins (DHRs) and helical bundle oligomers (HBs). We first rigidly fuse DHRs to HBs to generate a large library of oligomeric building blocks. We then generate assemblies with cyclic, dihedral, and point group symmetries from these building blocks using architecture guided rigid helical fusion with new software named WORMS. X-ray crystallography and cryo-electron microscopy characterization show that the hierarchical design approach can accurately generate a wide range of assemblies, including a 43 nm diameter icosahedral nanocage. The computational methods and building block sets described here provide a very general route to de novo designed protein nanomaterials.


Asunto(s)
Ciencia de los Materiales/métodos , Complejos Multiproteicos/ultraestructura , Nanoestructuras/ultraestructura , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Programas Informáticos
3.
J Exp Med ; 217(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32820331

RESUMEN

Pathogenic muscle-specific tyrosine kinase (MuSK)-specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient-derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm-exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.


Asunto(s)
Afinidad de Anticuerpos/inmunología , Autoanticuerpos/inmunología , Inmunoglobulina G/inmunología , Miastenia Gravis/inmunología , Autoantígenos/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Mutación/genética , Unión Proteica , Dominios Proteicos , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/química , Receptores Colinérgicos/inmunología
4.
Proc Natl Acad Sci U S A ; 113(3): 614-9, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26719414

RESUMEN

Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Multimerización de Proteína , Superóxido Dismutasa/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Modelos Biológicos , Modelos Moleculares , Neuronas Motoras/efectos de los fármacos , Proteínas Mutantes/toxicidad , Mutación/genética , Agregado de Proteínas/efectos de los fármacos , Conformación Proteica , Pliegue de Proteína/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Superóxido Dismutasa/química
5.
J Mol Evol ; 82(1): 11-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26584803

RESUMEN

Protein destabilization by amino acid substitutions is proposed to play a prominent role in widespread inherited human disorders, not just those known to involve protein misfolding and aggregation. To test this hypothesis, we computationally evaluate the effects on protein stability of all possible amino acid substitutions in 20 disease-associated proteins with multiple identified pathogenic missense mutations. For 18 of the 20 proteins studied, substitutions at known positions of pathogenic mutations are significantly more likely to destabilize the native protein fold (as indicated by more positive values of ∆∆G). Thus, positions identified as sites of disease-associated mutations, as opposed to non-disease-associated sites, are predicted to be more vulnerable to protein destabilization upon amino acid substitution. This finding supports the notion that destabilization of native protein structure underlies the pathogenicity of broad set of missense mutations, even in cases where reduced protein stability and/or aggregation are not characteristic of the disease state.


Asunto(s)
Mutación Missense , Proteínas/genética , Deficiencias en la Proteostasis/genética , Humanos , Estabilidad Proteica , Proteínas/metabolismo , Deficiencias en la Proteostasis/metabolismo
6.
J Mol Biol ; 426(24): 4112-4124, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25083917

RESUMEN

Amyotrophic lateral sclerosis has been linked to the gain of aberrant function of superoxide dismutase, Cu,Zn-SOD1 upon protein misfolding. The mechanism of SOD1 misfolding is thought to involve mutations leading to the loss of Zn, followed by protein unfolding and aggregation. We show that the removal of Zn from SOD1 may not lead to an immediate unfolding but immediately deactivates the enzyme through a combination of subtle structural and electronic effects. Using quantum mechanics/discrete molecular dynamics, we showed that both Zn-less wild-type (WT)-SOD1 and its D124N mutant that does not bind Zn have at least metastable folded states. In those states, the reduction potential of Cu increases, leading to the presence of detectable amounts of Cu(I) instead of Cu(II) in the active site, as confirmed experimentally. The Cu(I) protein cannot participate in the catalytic Cu(I)-Cu(II) cycle. However, even without the full reduction to Cu(I), the Cu site in the Zn-less variants of SOD1 is shown to be catalytically incompetent: unable to bind superoxide in a way comparable to the WT-SOD1. The changes are more radical and different in the D124N Zn-less mutant than in the Zn-less WT-SOD1, suggesting D124N being perhaps not the most adequate model for Zn-less SOD1. Overall, Zn in SOD1 appears to be influencing the Cu site directly by adjusting its reduction potential and geometry. Thus, the role of Zn in SOD1 is not just structural, as was previously thought; it is a vital part of the catalytic machinery.


Asunto(s)
Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Superóxido Dismutasa/química , Zinc/química , Biocatálisis , Electroforesis en Gel de Poliacrilamida , Simulación de Dinámica Molecular , Mutación Missense , Unión Proteica/genética , Estructura Terciaria de Proteína , Teoría Cuántica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Zinc/metabolismo
7.
J Mol Cell Biol ; 6(2): 104-15, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24620031

RESUMEN

The generation of toxic non-native protein conformers has emerged as a unifying thread among disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Atomic-level detail regarding dynamical changes that facilitate protein aggregation, as well as the structural features of large-scale ordered aggregates and soluble non-native oligomers, would contribute significantly to current understanding of these complex phenomena and offer potential strategies for inhibiting formation of cytotoxic species. However, experimental limitations often preclude the acquisition of high-resolution structural and mechanistic information for aggregating systems. Computational methods, particularly those combine both all-atom and coarse-grained simulations to cover a wide range of time and length scales, have thus emerged as crucial tools for investigating protein aggregation. Here we review the current state of computational methodology for the study of protein self-assembly, with a focus on the application of these methods toward understanding of protein aggregates in human neurodegenerative disorders.


Asunto(s)
Biología Computacional/métodos , Degeneración Nerviosa/metabolismo , Agregado de Proteínas , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Pliegue de Proteína
8.
Biochemistry ; 53(14): 2423-32, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24660965

RESUMEN

Soluble misfolded Cu/Zn superoxide dismutase (SOD1) is implicated in motor neuron death in amyotrophic lateral sclerosis (ALS); however, the relative toxicities of the various non-native species formed by SOD1 as it misfolds and aggregates are unknown. Here, we demonstrate that early stages of SOD1 aggregation involve the formation of soluble oligomers that contain an epitope specific to disease-relevant misfolded SOD1; this epitope, recognized by the C4F6 antibody, has been proposed as a marker of toxic species. Formation of potentially toxic oligomers is likely to be exacerbated by an oxidizing cellular environment, as evidenced by increased oligomerization propensity and C4F6 reactivity when oxidative modification by glutathione is present at Cys-111. These findings suggest that soluble non-native SOD1 oligomers, rather than native-like dimers or monomers, share structural similarity to pathogenic misfolded species found in ALS patients and therefore represent potential cytotoxic agents and therapeutic targets in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Biopolímeros/metabolismo , Epítopos/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Biopolímeros/química , Cromatografía en Gel , Epítopos/química , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Superóxido Dismutasa/química
9.
Mol Pain ; 8: 25, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500608

RESUMEN

The subcutaneous and systemic injection of serotonin reduces cutaneous and visceral pain thresholds and increases responses to noxious stimuli. Different subtypes of 5-hydroxytryptamine (5-HT) receptors are suggested to be associated with different types of pain responses. Here we show that serotonin also inhibits catechol O-methyltransferase (COMT), an enzyme that contributes to modultion the perception of pain, via non-competitive binding to the site bound by catechol substrates with a binding affinity comparable to the binding affinity of catechol itself (K(i) = 44 µM). Using computational modeling, biochemical tests and cellular assays we show that serotonin actively competes with the methyl donor S-adenosyl-L-methionine (SAM) within the catalytic site. Binding of serotonin to the catalytic site inhibits the access of SAM, thus preventing methylation of COMT substrates. The results of in vivo animal studies show that serotonin-induced pain hypersensitivity in mice is reduced by either SAM pretreatment or by the combined administration of selective antagonists for ß(2)- and ß(3)-adrenergic receptors, which have been previously shown to mediate COMT-dependent pain signaling. Our results suggest that inhibition of COMT via serotonin binding contributes to pain hypersensitivity, providing additional strategies for the treatment of clinical pain conditions.


Asunto(s)
Inhibidores de Catecol O-Metiltransferasa , Umbral del Dolor/efectos de los fármacos , Serotonina/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Catecol O-Metiltransferasa/metabolismo , Femenino , Masculino , Ratones , Umbral del Dolor/fisiología , Unión Proteica/efectos de los fármacos , S-Adenosilmetionina/farmacología , Serotonina/química , Serotonina/metabolismo
10.
Prog Mol Biol Transl Sci ; 107: 215-62, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22482452

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/patología , Animales , Apoptosis , Axones/metabolismo , Axones/patología , Humanos , Ratones , Modelos Moleculares , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Necrosis , Factores de Crecimiento Nervioso/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Procesamiento Postranscripcional del ARN , Superóxido Dismutasa/química , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Investigación Biomédica Traslacional
11.
Biochemistry ; 50(32): 7057-66, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21739997

RESUMEN

Mutation of the ubiquitous cytosolic enzyme Cu/Zn superoxide dismutase (SOD1) is hypothesized to cause familial amyotrophic lateral sclerosis (FALS) through structural destabilization leading to misfolding and aggregation. Considering the late onset of symptoms as well as the phenotypic variability among patients with identical SOD1 mutations, it is clear that nongenetic factor(s) impact ALS etiology and disease progression. Here we examine the effect of Cys-111 glutathionylation, a physiologically prevalent post-translational oxidative modification, on the stabilities of wild type SOD1 and two phenotypically diverse FALS mutants, A4V and I112T. Glutathionylation results in profound destabilization of SOD1(WT) dimers, increasing the equilibrium dissociation constant K(d) to ~10-20 µM, comparable to that of the aggressive A4V mutant. SOD1(A4V) is further destabilized by glutathionylation, experiencing an ~30-fold increase in K(d). Dissociation kinetics of glutathionylated SOD1(WT) and SOD1(A4V) are unchanged, as measured by surface plasmon resonance, indicating that glutathionylation destabilizes these variants by decreasing association rate. In contrast, SOD1(I112T) has a modestly increased dissociation rate but no change in K(d) when glutathionylated. Using computational structural modeling, we show that the distinct effects of glutathionylation on different SOD1 variants correspond to changes in composition of the dimer interface. Our experimental and computational results show that Cys-111 glutathionylation induces structural rearrangements that modulate stability of both wild type and FALS mutant SOD1. The distinct sensitivities of SOD1 variants to glutathionylation, a modification that acts in part as a coping mechanism for oxidative stress, suggest a novel mode by which redox regulation and aggregation propensity interact in ALS.


Asunto(s)
Cisteína/metabolismo , Glutatión/metabolismo , Mutación , Superóxido Dismutasa/metabolismo , Cromatografía en Gel , Dicroismo Circular , Dimerización , Cinética , Desnaturalización Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Superóxido Dismutasa/química , Superóxido Dismutasa/genética , Resonancia por Plasmón de Superficie
12.
J Biol Chem ; 284(20): 13940-13947, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19299510

RESUMEN

Over 100 mutations in Cu/Zn-superoxide dismutase (SOD1) result in familial amyotrophic lateral sclerosis. Dimer dissociation is the first step in SOD1 aggregation, and studies suggest nearly every amino acid residue in SOD1 is dynamically connected to the dimer interface. Post-translational modifications of SOD1 residues might be expected to have similar effects to mutations, but few modifications have been identified. Here we show, using SOD1 isolated from human erythrocytes, that human SOD1 is phosphorylated at threonine 2 and glutathionylated at cysteine 111. A second SOD1 phosphorylation was observed and mapped to either Thr-58 or Ser-59. Cysteine 111 glutathionylation promotes SOD1 monomer formation, a necessary initiating step in SOD1 aggregation, by causing a 2-fold increase in the K(d). This change in the dimer stability is expected to result in a 67% increase in monomer concentration, 315 nm rather than 212 nm at physiological SOD1 concentrations. Because protein glutathionylation is associated with redox regulation, our finding that glutathionylation promotes SOD1 monomer formation supports a model in which increased oxidative stress promotes SOD1 aggregation.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Eritrocitos/enzimología , Glutatión/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Dimerización , Glutatión/genética , Humanos , Modelos Biológicos , Mutación , Fosforilación , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...