Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 24(1): 120-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19998388

RESUMEN

A derivatization procedure has been developed for the improved characterization of fatty alcohol ethoxylate non-ionic surfactants by liquid chromatography/mass spectrometry. The end hydroxyl group of each surfactant species was converted into an oxycarbonylbenzene-2-sulfonic acid group with 2-sulfobenzoic anhydride under mild conditions. The produced sulfonic acid group allows all species, including fatty alcohols and those with less than three ethoxylates, to be uniformly ionized by electrospray ionization (ESI) mass spectrometry. Both acid and base can be used as a mobile phase additive for liquid chromatography without affecting M(n) and average ethoxylate values, although ion intensities are suppressed during the ESI process. The method was used to analyze seven commercial fatty alcohol ethoxylate non-ionic surfactants, and the determined M(n) and EO values were comparable with the results obtained by NMR. The relative ratio of different fatty alcohol based ethoxylates in a sample can also be determined using the summed mass spectral data.


Asunto(s)
Benzoatos/química , Cromatografía Líquida de Alta Presión/métodos , Alcoholes Grasos/análisis , Alcoholes Grasos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Tensoactivos/análisis , Tensoactivos/química , Alcoholes/análisis , Alcoholes/química , Líquidos Iónicos/análisis , Líquidos Iónicos/química
2.
Langmuir ; 25(21): 12488-94, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19791777

RESUMEN

Trialkylborane catalysts and their amine complexes are hydrolytically and oxidatively unstable, decomposing in water very rapidly to trialkylboroxin, borate esters, and boric acid. However, trialkylborane-amine complexes will rapidly partition to a colloidal phase and remain surprisingly stable for long periods of time (>3 months) until such time as the catalyst is brought into an environment convenient for phase transfer. We show that tributylborane-amine complexes can be stored in aqueous solutions of several water-miscible polymers. We show by diffusion-oriented spectroscopy (DOSY) NMR experiments that the tributylborane-amine catalyst diffuses at nearly the same rate as the colloidal phase, providing strong evidence that they coexist. The aqueous colloidal catalysts can then be mixed with polymerizable monomers such as acrylates to produce good-quality polymers. We show that these colloid-encapsulated catalysts are also useful in producing adhesives capable of adhering low-surface-energy plastic substrates, even when formulated in systems containing 45% water. This is the first report of a waterborne structural adhesive.

3.
J Am Chem Soc ; 129(22): 7065-76, 2007 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-17489593

RESUMEN

For the first time commercially relevant catalysts for the copolymerization of ethylene and styrene have been identified. The catalysts maintain very high copolymer efficiencies at relatively high reactor temperatures without sacrificing styrene comonomer reactivity. The observations which led to this discovery are based upon the kinetic analysis of ethylene-styrene copolymerization using constrained geometry catalyst (eta5-C5Me4)(SiMe2-N-t-Bu)TiMe2 (1). This analysis revealed a substantial styrene penultimate monomer effect. Inherent reactivity of 1 toward styrene is greatly improved when the penultimate monomer on the growing polymer chain is styrene rather than ethylene. The presence of a penultimate styrene effect led to the hypothesis that catalysts bearing aromatic moieties in close proximity to the active site could lead to enhancement of styrene reactivity for this catalyst family. This hypothesis was born out by two new constrained geometry catalysts, one having two phenyl substituents placed in the 3 and 3' positions of the Cp ring (2) and the other with a 2,2'-biphenyl fragment attached to the Cp ring (3). Both catalysts exhibit higher activity than that of 1 and, more importantly, much higher styrene reactivity leading to copolymers with substantially increased styrene content (21.5% for 2, 30.6% for 3) as compared to 1 (11%) under the same polymerization conditions. Analysis of the X-ray crystal structures of 2 and 3 shows no overriding structural arguments for the increased performance. Outstanding polymerization characteristics achieved with 3 make this catalyst a candidate for commercial production of ethylene-styrene resins in a solution process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA