Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6397, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737304

RESUMEN

A damaging Mw5.5 earthquake occurred at Pohang, South Korea, in 2017, after stimulating an enhanced geothermal system by borehole fluid injections. The earthquake was likely triggered by these operations. Current approaches for predicting maximum induced earthquake magnitude ([Formula: see text]) consider the volume of the injected fluid as the main controlling factor. However, these approaches are unsuccessful in predicting earthquakes, such as the Pohang one. Here we analyse the case histories of induced earthquakes, and find that [Formula: see text] scales with the logarithm of the elapsed time from the beginning of the fluid injection to the earthquake occurrence. This is also the case for the Pohang Earthquake. Its significant probability was predictable. These results validate an alternative to predicting [Formula: see text]. It is to monitor the exceedance probability of an assumed [Formula: see text] in real time by monitoring the seismogenic index, a quantity that characterizes the intensity of the fluid-induced seismicity per unit injected volume.

2.
Science ; 360(6392): 1007-1009, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29700224

RESUMEN

The moment magnitude (Mw) 5.4 Pohang earthquake, the most damaging event in South Korea since instrumental seismic observation began in 1905, occurred beneath the Pohang geothermal power plant in 2017. Geological and geophysical data suggest that the Pohang earthquake was induced by fluid from an enhanced geothermal system (EGS) site, which was injected directly into a near-critically stressed subsurface fault zone. The magnitude of the mainshock makes it the largest known induced earthquake at an EGS site.

3.
Science ; 316(5826): 878-81, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17495168

RESUMEN

High-velocity weakening of faults may drive fault motion during large earthquakes. Experiments on simulated faults in Carrara marble at slip rates up to 1.3 meters per second demonstrate that thermal decomposition of calcite due to frictional heating induces pronounced fault weakening with steady-state friction coefficients as low as 0.06. Decomposition produces particles of tens of nanometers in size, and the ultralow friction appears to be associated with the flash heating on an ultrafine decomposition product. Thus, thermal decomposition may be an important process for the dynamic weakening of faults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...