Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(41): e2307718120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788310

RESUMEN

Fluid flow is thought to prevent bacterial adhesion, but some bacteria use adhesins with catch bond properties to enhance adhesion under high shear forces. However, many studies on bacterial adhesion either neglect the influence of shear force or use shear forces that are not typically found in natural systems. In this study, we use microfluidics and single-cell imaging to examine how the human pathogen Pseudomonas aeruginosa interacts with surfaces when exposed to shear forces typically found in the human body (0.1 pN to 10 pN). Through cell tracking, we demonstrate that the angle between the cell and the surface predicts if a cell will depart the surface. We discover that at lower shear forces, type IV pilus retraction tilts cells away from the surface, promoting surface departure. Conversely, we show that higher shear forces counterintuitively enhance adhesion by counteracting type IV pilus retraction-dependent cell tilting. Thus, our results reveal that P. aeruginosa exhibits behavior reminiscent of a catch bond, without having a specific adhesin that is enhanced by force. Instead, P. aeruginosa couples type IV pilus dynamics and cell geometry to tune adhesion to its mechanical environment, which likely provides a benefit in dynamic host environments.


Asunto(s)
Fimbrias Bacterianas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Fimbrias Bacterianas/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Fenómenos Físicos , Proteínas Fimbrias/metabolismo
2.
Viruses ; 14(9)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36146655

RESUMEN

Merkel cell carcinoma (MCC) is a rare but aggressive form of skin cancer predominantly caused by the human Merkel cell polyomavirus (MCPyV). Treatment for MCC includes excision and radiotherapy of local disease, and chemotherapy or immunotherapy for metastatic disease. The schweinfurthin family of natural compounds previously displayed potent and selective growth inhibitory activity against the NCI-60 panel of human-derived cancer cell lines. Here, we investigated the impact of schweinfurthin on human MCC cell lines. Treatment with the schweinfurthin analog, 5'-methylschweinfurth G (MeSG also known as TTI-3114), impaired metabolic activity through induction of an apoptotic pathway. MeSG also selectively inhibited PI3K/AKT and MAPK/ERK pathways in the MCPyV-positive MCC cell line, MS-1. Interestingly, expression of the MCPyV small T (sT) oncogene selectively sensitizes mouse embryonic fibroblasts to MeSG. These results suggest that the schweinfurthin family of compounds display promising potential as a novel therapeutic option for virus-induced MCCs.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Animales , Carcinoma de Células de Merkel/patología , Fibroblastos/metabolismo , Guanosina/análogos & derivados , Humanos , Poliomavirus de Células de Merkel/genética , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Estilbenos , Tionucleósidos
3.
Pharmacol Res Perspect ; 9(3): e00689, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34003586

RESUMEN

Dopamine D2 -like receptor antagonists have been suggested as being potential anticancer therapeutics with specific utility for central nervous system cancers due to their ability to cross the blood-brain barrier. Despite a plethora of data reporting anticancer effects for D2 R antagonists in cell or animal studies, the ligand concentrations or doses required to achieve such effects greatly exceed the levels known to cause high degrees of occupancy of the D2 receptor. To resolve this conundrum, we interrogated a panel of glioblastoma multiforme (GBM) cell lines using D2 antagonists of varying chemotype. We studied the cytotoxic effects of these compounds, and also ascertained the expression of D2 receptors (D2 R) on these cells. Although several chemotypes of D2 R antagonists, including phenothiazines and phenylbutylpiperidines, were effective against GBM cell line cultures, the highly selective antagonist remoxipride had no anticancer activity at biologically relevant concentrations. Moreover the D2 R antagonist-induced cytotoxicity in monolayer cultures was independent of whether the cells expressed D2 R. Instead, cytotoxicity was associated with a rapid, high-magnitude calcium flux into the cytoplasm and mitochondria, which then induced depolarization and apoptosis. Blocking this flux protected the GBM cell lines U87MG, U251MG, and A172. Together, these data suggest that the cytotoxicity of these D2 R antagonists involves calcium signaling mechanisms, not D2 R antagonism. Repurposing of existing drugs should focus on the former, not latter, mechanism.


Asunto(s)
Antipsicóticos/farmacología , Señalización del Calcio/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Antagonistas de los Receptores de Dopamina D2/farmacología , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/metabolismo , Agonistas de Dopamina/farmacología , Glioblastoma/metabolismo , Humanos , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genética
4.
Pharmacology ; 105(1-2): 19-27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31645049

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a common and lethal cancer of the central nervous system. This cancer is difficult to treat because most anticancer therapeutics do not readily penetrate into the brain due to the tight control at the cerebrovascular barrier. Numerous studies have suggested that dopamine D2 receptor (D2R) antagonists, such as first generation antipsychotics, may have anticancer efficacy in vivo and in vitro. The role of the D2R itself in the anticancer effects is unclear, but there is evidence suggesting that D2R activation promotes stem-like and spheroid forming behaviors in GBM. OBJECTIVES: We aimed to observe the role of the dopamine D2R and its modulators (at selective concentrations) in spheroid formation and stemness of GBM cell line, U87MG, to clarify the validity of the D2R as a therapeutic target for cancer therapy. METHODS: Spheroid formation assays and Western blotting of the glioblastoma cell line, U87MG, were used to observe responses to treatment with the D2R agonists sumanirole, ropinirole, and 4-propyl-9-hydroxynaphthoxazine (PHNO); and the D2R antagonists thioridazine, pimozide, haloperidol, and remoxipride. Extreme limiting dilution analysis was done to determine the impact of sumanirole and remoxipride treatment on sphere-forming cell frequency. Proliferation was also measured by crystal violet staining. Stable lentiviral transduction of DRD2 or shDRD2 was used to validate the role of the D2R in assay behaviors. RESULTS: D2R antagonists thioridazine, pimozide, haloperidol, and remoxipride decrease spheroid formation behaviors at a selective 100 nmol/L concentration, while D2R agonists PHNO, sumanirole, and ropinirole increase the formation of spheroids. Similarly, 100 nmol/L remoxipride decreased sphere-forming cell frequency. These results were recapitulated with genetic overexpression and knockdown of the D2R, and combination experiments indicate that the D2R is required for the effects of the pharmacological modulators. Furthermore, spheroid proliferation and invasive capacity increased under treatment with 100 nmol/L sumanirole and decreased under treatment with 100 nmol/L thioridazine. Expression levels of the stemness markers Nestin and Sox2, as well as those of differentiation marker glial fibrillary acidic protein, were not altered by 100 nmol/L thioridazine or sumanirole for 72 h or continuous treatment with these compounds for 7 days during a spheroid formation assay. CONCLUSIONS: Signaling activity of the dopamine D2R may be involved in the spheroid formation phenotype in the context of the U87MG cell line. However, this modulation may not be due to alterations in stemness marker expression, but due to other factors that may contribute to spheroid formation, such as cell-cell adhesion or EGFR signaling.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Receptores de Dopamina D2/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/farmacología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Fenotipo , ARN Interferente Pequeño/genética , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genética , Esferoides Celulares
5.
J Nucl Cardiol ; 25(4): 1400-1411, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29637525

RESUMEN

Cardiac PET/CT is an evolving, non-invasive imaging modality that impacts patient management in many clinical scenarios. Beyond offering the capability to assess myocardial perfusion, inflammatory cardiac pathologies, and myocardial viability, cardiac PET/CT also allows for the non-invasive quantitative assessment of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Recognizing the need for an enhanced comprehension of coronary physiology, Siemens Healthineers implemented a sophisticated solution for the calculation of MBF and MFR in 2009. As a result, each aspect of their innovative scanner and image-processing technology seamlessly integrates into an efficient, easy-to-use workflow for everyday clinical use that maximizes the number of patients who potentially benefit from this imaging modality.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Cardiología , Circulación Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Medicina Nuclear , Soluciones
6.
Bioorg Med Chem ; 25(16): 4464-4474, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28693915

RESUMEN

As part of an ongoing drug development effort aimed at selective opioid receptor ligands based on the pawhuskin natural products we have synthesized a small set of amide isosteres. These amides were centered on lead compounds which are selective antagonists for the delta and kappa opioid receptors. The amide isomers revealed here show dramatically different activity from the parent stilbene compounds. Three of the isomers synthesized showed antagonist activity for the opioid growth factor (OGF)/opioid growth factor receptor (OGFR) axis which is involved in cellular and organ growth control. This cellular signaling mechanism is targeted by "low-dose" naltrexone therapy which is being tested clinically for multiple sclerosis, Crohn's disease, cancer, and wound healing disorders. The compounds described here are the first selective small molecule ligands for the OGF/OGFR system and will serve as important leads and probes for further study.


Asunto(s)
Amidas/farmacología , Receptores Opioides/metabolismo , Amidas/síntesis química , Amidas/química , Animales , Células COS , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...