Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 15(5): 773-789, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35603024

RESUMEN

Males and females are often subject to different and even opposing selection pressures. When a given trait has a shared genetic basis between the sexes, sexual conflict (antagonism) can arise. This can result in significant individual-level fitness consequences that might also affect population performance, whilst anthropogenic environmental change can further exacerbate maladaptation in one or both sexes driven by sexual antagonism. Here, we develop a genetically explicit eco-evolutionary model using an agent-based framework to explore how a population of a facultatively migratory fish species (brown trout Salmo trutta) adapts to environmental change across a range of intersex genetic correlations for migration propensity, which influence the magnitude of sexual conflict. Our modelled focal trait represents a condition threshold governing whether individuals adopt a resident or anadromous (sea migration) tactic. Anadromy affords potential size-mediated reproductive advantages to both males and females due to improved feeding opportunities at sea, but these can be undermined by high background marine mortality and survival/growth costs imposed by marine parasites (sea lice). We show that migration tactic frequency for a given set of environmental conditions is strongly influenced by the intersex genetic correlation, such that one sex can be dragged off its optimum more than the other. When this occurred in females in our model, population productivity was substantially reduced, but eco-evolutionary outcomes were altered by allowing for sneaking behaviour in males. We discuss real-world implications of our work given that anadromous salmonids are regularly challenged by sea lice infestations, which might act synergistically with other stressors such as climate change or fishing that impact marine performance, driving populations towards residency and potentially reduced resilience.

2.
Proc Biol Sci ; 287(1937): 20201671, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33081620

RESUMEN

The release of captive-bred animals into the wild is commonly practised to restore or supplement wild populations but comes with a suite of ecological and genetic consequences. Vast numbers of hatchery-reared fish are released annually, ostensibly to restore/enhance wild populations or provide greater angling returns. While previous studies have shown that captive-bred fish perform poorly in the wild relative to wild-bred conspecifics, few have measured individual lifetime reproductive success (LRS) and how this affects population productivity. Here, we analyse data on Atlantic salmon from an intensely studied catchment into which varying numbers of captive-bred fish have escaped/been released and potentially bred over several decades. Using a molecular pedigree, we demonstrate that, on average, the LRS of captive-bred individuals was only 36% that of wild-bred individuals. A significant LRS difference remained after excluding individuals that left no surviving offspring, some of which might have simply failed to spawn, consistent with transgenerational effects on offspring survival. The annual productivity of the mixed population (wild-bred plus captive-bred) was lower in years where captive-bred fish comprised a greater fraction of potential spawners. These results bolster previous empirical and theoretical findings that intentional stocking, or non-intentional escapees, threaten, rather than enhance, recipient natural populations.


Asunto(s)
Explotaciones Pesqueras , Salmo salar/fisiología , Animales , Animales Salvajes , Acuicultura , Cruzamiento , Reproducción
3.
Ecol Evol ; 9(12): 7096-7111, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31312431

RESUMEN

Comparing observed versus theoretically expected evolutionary responses is important for our understanding of the evolutionary process, and for assessing how species may cope with anthropogenic change. Here, we document directional selection for larger female size in Atlantic salmon, using pedigree-derived estimates of lifetime reproductive success as a fitness measure. We show the trait is heritable and, thus, capable of responding to selection. The Breeder's Equation, which predicts microevolution as the product of phenotypic selection and heritability, predicted evolution of larger size. This was at odds, however, with the observed lack of either phenotypic or genetic temporal trends in body size, a so-called "paradox of stasis." To investigate this paradox, we estimated the additive genetic covariance between trait and fitness, which provides a prediction of evolutionary change according to Robertson's secondary theorem of selection (STS) that is unbiased by missing variables. The STS prediction was consistent with the observed stasis. Decomposition of phenotypic selection gradients into genetic and environmental components revealed a potential upward bias, implying unmeasured factors that covary with trait and fitness. These results showcase the power of pedigreed, wild population studies-which have largely been limited to birds and mammals-to study evolutionary processes on contemporary timescales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...