Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chemphyschem ; 24(22): e202300437, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37669423

RESUMEN

The hydrolysis of the phosphonate ester linker during the synthesis of hybrid (organic-inorganic) TiO2 nanoparticles is important when forming porous hybrid organic-inorganic metal phosphonates. In the present work, a method was utilized to control the in-situ partial hydrolysis of diphosphonate ester in the presence of a titania precursor as a function of acid content, and its impact on the hybrid nanoparticles was assessed. Organodiphosphonate esters, and more specific, their hydrolysis degree during the formation of hybrid organic-inorganic metal oxide nanoparticles, are relatively under explored as linkers. Here, a detailed analysis on the hydrolysis of tetraethyl propylene diphosphonate ester (TEPD) as diphosphonate linker to produce hybrid TiO2 nanoparticles is discussed as a function of acid content. Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4 % to 18.8 % under the applied conditions. As a result of the difference in partial hydrolysis, the linker-TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker-TiO2 nanoparticle surface dynamics is crucial for making hybrid organic-inorganic materials (i. e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysis.

2.
Chempluschem ; 88(3): e202200441, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36802130

RESUMEN

While synthesis-properties-performance correlations are being studied for organophosphonic acid grafted TiO2 , their stability and the impact of the exposure conditions on possible changes in the interfacial surface chemistry remain unexplored. Here, the impact of different ageing conditions on the evolution of the surface properties of propyl- and 3-aminopropylphosphonic acid grafted mesoporous TiO2 over a period of 2 years is reported, using solid-state 31 P and 13 C NMR, ToF-SIMS and EPR as main techniques. In humid conditions under ambient light exposure, PA grafted TiO2 surfaces initiate and facilitate photo-induced oxidative reactions, resulting in the formation of phosphate species and degradation of the grafted organic group with a loss of carbon content ranging from 40 to 60 wt %. By revealing its mechanism, solutions were provided to prevent degradation. This work provides valuable insights for the broad community in choosing optimal exposure/storage conditions that extend the lifetime and improve the materials' performance, positively impacting sustainability.

3.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555102

RESUMEN

Quasi-spherical undoped ZnO and Al-doped ZnO nanoparticles with different aluminum content, ranging from 0.5 to 5 at% of Al with respect to Zn, were synthesized. These nanoparticles were evaluated as photocatalysts in the photodegradation of the Rhodamine B (RhB) dye aqueous solution under UV-visible light irradiation. The undoped ZnO nanopowder annealed at 400 °C resulted in the highest degradation efficiency of ca. 81% after 4 h under green light irradiation (525 nm), in the presence of 5 mg of catalyst. The samples were characterized using ICP-OES, PXRD, TEM, FT-IR, 27Al-MAS NMR, UV-Vis and steady-state PL. The effect of Al-doping on the phase structure, shape and particle size was also investigated. Additional information arose from the annealed nanomaterials under dynamic N2 at different temperatures (400 and 550 °C). The position of aluminum in the ZnO lattice was identified by means of 27Al-MAS NMR. FT-IR gave further information about the type of tetrahedral sites occupied by aluminum. Photoluminescence showed that the insertion of dopant increases the oxygen vacancies reducing the peroxide-like species responsible for photocatalysis. The annealing temperature helps increase the number of red-emitting centers up to 400 °C, while at 550 °C, the photocatalytic performance drops due to the aggregation tendency.


Asunto(s)
Óxido de Zinc , Óxido de Zinc/química , Espectroscopía Infrarroja por Transformada de Fourier , Aluminio , Rayos Ultravioleta
4.
Mol Pharm ; 19(8): 2712-2724, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476407

RESUMEN

In the present work, an insoluble polymer, i.e., ethyl cellulose (EC), was combined with the water-soluble polyvinylpyrrolidone (PVP) as a carrier system for the formulation of amorphous solid dispersions. The rationale was that by conjoining these two different types of carriers a more gradual drug release could be created with less risk for precipitation. Our initial hypothesis was that upon contact with the dissolution medium, PVP would be released, creating a porous EC matrix through which the model drug indomethacin could diffuse. On the basis of observations of EC as a coating material, the effect of the molecular weight of PVP, and the ratio of EC/PVP on the miscibility of the polymer blend, the solid state of the solid dispersion and the drug release from these solid dispersions were investigated. X-ray powder diffraction, modulated differential scanning calorimetry, and solid-state nuclear magnetic resonance were used to unravel the miscibility and solid-state properties of these blends and solid dispersions. Solid-state nuclear magnetic resonance appeared to be a crucial technique for this aspect as modulated differential scanning calorimetry was not sufficient to grasp the complex phase behavior of these systems. Both EC/PVP K12 and EC/PVP K25 blends were miscible over the entire composition range, and addition of indomethacin did not alter this. Concerning the drug release, it was initially thought that more PVP would lead to faster drug release with a higher probability that all of the drug molecules would be able to diffuse out of the EC network as more pores would be created. However, this view on the release mechanism appeared to be too simplistic as an optimum was observed for both blends. On the basis of this work, it could be concluded that drug release from this complex ternary system was affected not only by the ratio of EC/PVP and the molecular weight of PVP but also by interactions between the three components, the wettability of the formulations, and the viscosity layer that was created around the particles.


Asunto(s)
Excipientes , Povidona , Rastreo Diferencial de Calorimetría , Celulosa/análogos & derivados , Indometacina/química , Polímeros/química , Porosidad , Povidona/química , Solubilidad , Difracción de Rayos X
5.
Metabolites ; 11(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34436478

RESUMEN

Metabolite profiling of blood plasma, by proton nuclear magnetic resonance (1H-NMR) spectroscopy, offers great potential for early cancer diagnosis and unraveling disruptions in cancer metabolism. Despite the essential attempts to standardize pre-analytical and external conditions, such as pH or temperature, the donor-intrinsic plasma protein concentration is highly overlooked. However, this is of utmost importance, since several metabolites bind to these proteins, resulting in an underestimation of signal intensities. This paper describes a novel 1H-NMR approach to avoid metabolite binding by adding 4 mM trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) as a strong binding competitor. In addition, it is demonstrated, for the first time, that maleic acid is a reliable internal standard to quantify the human plasma metabolites without the need for protein precipitation. Metabolite spiking is further used to identify the peaks of 62 plasma metabolites and to divide the 1H-NMR spectrum into 237 well-defined integration regions, representing these 62 metabolites. A supervised multivariate classification model, trained using the intensities of these integration regions (areas under the peaks), was able to differentiate between lung cancer patients and healthy controls in a large patient cohort (n = 160), with a specificity, sensitivity, and area under the curve of 93%, 85%, and 0.95, respectively. The robustness of the classification model is shown by validation in an independent patient cohort (n = 72).

6.
J Colloid Interface Sci ; 581(Pt B): 566-575, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818676

RESUMEN

HYPOTHESIS: Conjugated polymer nanoparticles (CNPs) have attracted considerable attention within bioimaging due to their excellent optical properties and biocompatibility. However, unspecific adsorption of proteins hampers their effective use as advanced bioimaging probes. Controlled methodologies made possible tailor-made functional poly(p-phenylene vinylene), enabling one-pot synthesis of CNPs containing functional surface groups. Hence, it should be feasible to PEGylate these CNPs to tune the uptake by cell lines representative for the brain without imparting their optical properties. EXPERIMENTS: CNPs consisting of the statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene and poly(2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene) were fabricated by miniemulsion solvent evaporation technique. Surface carboxylic acid groups were used to covalently attach amine-terminated polyethylene glycol (PEG) of different molecular weights. We investigated the effect of grafting CNPs with PEG chains on their intrinsic optical properties, protein adsorption behavior and uptake by representative brain cell lines. FINDINGS: PEGylation did not affect the optical properties and biocompatibility of our CNPs. Moreover, a significant decrease in protein corona formation and unspecific uptake in central nervous system cell lines, depending on PEG chain length, was observed. This is the first report indicating that PEGylation does not affect the CNPs role as excellent bioimaging tools and can be adapted to tune biological interactions with brain cells.


Asunto(s)
Nanopartículas , Polivinilos , Polietilenglicoles , Polímeros
7.
Future Sci OA ; 4(6): FSO310, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30057787

RESUMEN

AIM: To identify the plasma metabolic profile associated with childhood obesity and its metabolic phenotypes. MATERIALS & METHODS: The plasma metabolic profile of 65 obese and 37 normal-weight children was obtained using proton NMR spectroscopy. NMR spectra were rationally divided into 110 integration regions, which reflect relative metabolite concentrations, and were used as statistical variables. RESULTS: Obese children show increased levels of lipids, N-acetyl glycoproteins, and lactate, and decreased levels of several amino acids, α-ketoglutarate, glucose, citrate, and cholinated phospholipids as compared with normal-weight children. Metabolically healthy children show lower levels of lipids and lactate, and higher levels of several amino acids and cholinated phospholipids, as compared with unhealthy children. CONCLUSION: This study reveals new valuable findings in the field of metabolomics and childhood obesity. Although validation should be performed, the proof of principle looks promising and justifies a deeper investigation of the diagnostic possibilities of proton NMR metabolomics in follow-up studies. Trial registration: NCT03014856. Registered January 9, 2017.

8.
RSC Adv ; 8(64): 36869-36878, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35558930

RESUMEN

The development of functional nanocarriers with stimuli-responsive properties has advanced tremendously to serve biomedical applications such as drug delivery and regenerative medicine. However, the development of biodegradable nanocarriers that can be loaded with hydrophilic compounds and ensure its controlled release in response to changes in the surrounding environment still remains very challenging. Herein, we achieved such demands via the preparation of aqueous core nanocapsules using a base-catalyzed interfacial reaction employing a diisocyanate monomer and functional monomers/polymers containing thiol and hydroxyl functionalities at the droplet interface. pH-responsive poly(thiourethane-urethane) nanocarriers with ester linkages were synthesized by incorporating polycaprolactone diol, which is susceptible to hydrolytic degradation via ester linkages, as a functional monomer in the reaction formulation. We could demonstrate that by systematically varying the number of biodegradable segments, the morphology of the nanocarriers can be tuned without imparting the efficient encapsulation of hydrophilic payload (>85% encapsulation efficiency) and its transfer from organic to aqueous phase. The developed nanocarriers allow for a fast release of hydrophilic payload that depends on pH, the number of biodegradable segments and nanocarrier morphology. Succinctly put, this study provides important information to develop pH-responsive nanocarriers with tunable morphology, using interfacial reactions in the inverse miniemulsion process, by controlling the number of degradable segments to adjust the release profile depending on the type of application envisaged.

9.
Mol Pharm ; 14(5): 1726-1741, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28363028

RESUMEN

We recently found that indomethacin (IMC) can effectively act as a powerful crystallization inhibitor for polyethylene glycol 6000 (PEG) despite the fact that the absence of interactions between the drug and the carrier in the solid state was reported in the literature. However, in the present study, we investigate the possibility of drug-carrier interactions in the liquid state to explain the polymer crystallization inhibition effect of IMC. We also aim to discover other potential PEG crystallization inhibitors. Drug-carrier interactions in both liquid and solid state are characterized by variable temperature Fourier transform infrared spectroscopy (FTIR) and cross-polarization magic angle spinning 13C nuclear magnetic resonance spectroscopy (CP/MAS NMR). In the liquid state, FTIR data show evidence of the breaking of hydrogen bonding between IMC molecules to form interactions of the IMC monomer with PEG. The drug-carrier interactions are disrupted upon storage and polymer crystallization, resulting in segregation of IMC from PEG crystals that can be observed under polarized light microscopy. This process is further confirmed by 13C NMR since in the liquid state, when the IMC/PEG monomer units ratio is below 2:1, IMC signals are undetectable because of the loss of cross-polarization efficiency in the mobile IMC molecules upon attachment to PEG chains via hydrogen bonding. This suggests that each ether oxygen of the PEG unit can form hydrogen bonds with two IMC molecules. The NMR spectrum of IMC shows no change in solid dispersions with PEG upon storage, indicating the absence of interactions in the solid state, hence confirming previous studies. The drug-carrier interactions in the liquid state elucidate the crystallization inhibition effect of IMC on PEG as well as other semicrystalline polymers such as poloxamer and Gelucire. However, hydrogen bonding is a necessary but apparently not a sufficient condition for the polymer crystallization inhibition. Screening of crystallization inhibitors of semicrystalline polymers discovers numerous candidates that exhibit the same behavior as IMC, demonstrating a general pattern of polymer crystallization inhibition rather than a particular case. Furthermore, the crystallization inhibition effect of drugs on PEG is independent of the carrier molecular weight. These mechanistic findings on the formation and disruption of hydrogen bonds in semicrystalline dispersions can be extended to amorphous dispersions and are of significant importance for preparation of solid dispersions with consistent and reproducible physicochemical properties.


Asunto(s)
Indometacina/química , Rastreo Diferencial de Calorimetría , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Polietilenglicoles/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
Sci Rep ; 7: 46257, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406235

RESUMEN

With recent advances in the field of diagnostics and theranostics, liposomal technology has secured a fortified position as a potential nanocarrier. Specifically, radiation/photo-sensitive liposomes containing photo-polymerizable cross-linking lipids are intriguing as they can impart the vesicles with highly interesting properties such as response to stimulus and improved shell stability. In this work, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DTPE) is used as a photo-polymerizable lipid to form functional hybrid-liposomes as it can form intermolecular cross-linking through the diacetylenic groups. Hybrid-liposomes were formulated using mixtures of DTPE and saturated lipids of different chain lengths (dipalmitoylphosphatidylcholine (DPPC) and dimirystoilphosphatidylcholine (DMPC)) at different molar ratios. The physico-chemical characteristics of the liposomes has been studied before and after UV irradiation using a combination of techniques: DSC, QCM-D and solid-state NMR. The results signify the importance of a subtle modification in alkyl chain length on the phase behavior of the hybrid-liposomes and on the degree of crosslinking in the shell.


Asunto(s)
Fenómenos Químicos , Portadores de Fármacos/química , Lípidos/química , Liposomas/química , Nanopartículas/química , Luz , Espectroscopía de Resonancia Magnética , Estructura Molecular , Procesos Fotoquímicos , Nanomedicina Teranóstica , Termogravimetría
11.
Magn Reson Chem ; 55(8): 706-713, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28061019

RESUMEN

Accurate identification and quantification of human plasma metabolites can be challenging in crowded regions of the NMR spectrum with severe signal overlap. Therefore, this study describes metabolite spiking experiments on the basis of which the NMR spectrum can be rationally segmented into well-defined integration regions, and this for spectrometers having magnetic field strengths corresponding to 1 H resonance frequencies of 400 MHz and 900 MHz. Subsequently, the integration data of a case-control dataset of 69 lung cancer patients and 74 controls were used to train a multivariate statistical classification model for both field strengths. In this way, the advantages/disadvantages of high versus medium magnetic field strength were evaluated. The discriminative power obtained from the data collected at the two magnetic field strengths is rather similar, i.e. a sensitivity and specificity of respectively 90 and 97% for the 400 MHz data versus 88 and 96% for the 900 MHz data. This shows that a medium-field NMR spectrometer (400-600 MHz) is already sufficient to perform clinical metabolomics. However, the improved spectral resolution (reduced signal overlap) and signal-to-noise ratio of 900 MHz spectra yield more integration regions that represent a single metabolite. This will simplify the unraveling and understanding of the related, disease disturbed, biochemical pathways. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Pulmonares/sangre , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Bases de Datos Factuales , Femenino , Humanos , Campos Magnéticos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Análisis Multivariante , Fenotipo , Relación Señal-Ruido , Adulto Joven
12.
Solid State Nucl Magn Reson ; 78: 50-55, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27497944

RESUMEN

For the first time, an absolute quantification of hybrid materials obtained from the reaction of phenylphosphonic acid (PPA) with TiO2 nanoparticles under different reaction conditions is reported. Next to the amount of PPA involved in grafting to the TiO2 nanoparticles, also the PPA included in titaniumphenylphosphonate crystallites is described quantitatively. The quantitative analysis is based on solid state (31)P MAS NMR and is further applied to evaluate the stability of the resulting hybrid materials towards hydrolysis and organic solvent exposure.

13.
Chem Commun (Camb) ; 51(87): 15858-15861, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26377628

RESUMEN

Functional nanocarriers were synthesized using an in situ inverse miniemulsion polymerization employing thiol-isocyanate reactions at the droplet interface to encapsulate hydrophilic payloads. The morphology of the nanocarriers is conveniently tunable by varying the reaction conditions and the dispersions are easily transferable to the aqueous phase.


Asunto(s)
Sistemas de Liberación de Medicamentos , Isocianatos/química , Nanopartículas/química , Compuestos de Sulfhidrilo/química , Antibióticos Antineoplásicos/química , Doxorrubicina/química , Emulsiones , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Cloruro de Potasio/química , 2,4-Diisocianato de Tolueno/química , Uretano/síntesis química
14.
Protein Eng Des Sel ; 28(10): 351-63, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26243885

RESUMEN

In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications.


Asunto(s)
Citoplasma/genética , Escherichia coli/citología , Escherichia coli/genética , Inteínas , Ingeniería de Proteínas/métodos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Alquinos/química , Quitina/metabolismo , Química Clic , Expresión Génica , Humanos , Molécula 1 de Adhesión Celular Vascular/genética
15.
Macromol Rapid Commun ; 36(16): 1479-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26033750

RESUMEN

The branching stemming from midchain radical formation in n-butyl acrylate polymerization is investigated via melt-state (13) C NMR measurements. The dependence of the degree of branching (DB) on the monomer conversion of the system is examined for photoinduced polymerizations, revealing a steady increase in branching with conversion. For polymerization at moderate light intensities, an increase in branching from 0.03% to 0.37% is observed for polymerizations at 60 °C, which is fivefold below the level of branching observed in thermally initiated polymerizations under otherwise identical reaction conditions. The reason for this overall reduction in branching remains momentarily unclear; yet, a strong dependence of branching on light intensity is observed. While polymerization under a 1 W LED lamp results at almost full monomer conversion in branching degrees of 0.22%, polymerization under a 400 W lamp yields 1.81% of chain branches.


Asunto(s)
Acrilatos/química , Polimerizacion/efectos de la radiación , Polímeros/química , Acrilatos/síntesis química , Cinética , Luz , Espectroscopía de Resonancia Magnética , Polímeros/síntesis química
16.
Chem Sci ; 6(10): 5753-5761, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29861904

RESUMEN

Photo-induced copper-mediated radical polymerization is used to synthesize monodisperse sequence defined acrylate oligomers via consecutive single unit monomer insertion reactions and intermediate purification of the compounds by column chromatography or preparative recycling size exclusion chromatography. Monomer conversions are followed during reaction by means of infrared spectroscopy. When reaction conditions are chosen carefully and any residues from chlorinated solvents are avoided, 100% pure Br end capped sequence defined oligomers are obtained, demonstrating the convenience and power of photo-induced copper mediated radical insertion for establishing sequence control. Within this work, a library of sequence defined oligomers containing polar and apolar ester groups have been obtained, and for the first time, perfectly monodisperse acrylate pentamers became accessible from radical insertion reactions.

17.
Inorg Chem ; 54(1): 69-78, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25517211

RESUMEN

Aqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate. This leads to (i) an intermediate situation of monomeric VO(2+) complexes with a mix of oxalate/citrate ligands and (ii) a final situation of both monomeric and dimeric complexes with exclusively citrato ligands. The monomeric citrato-VO(2+) complexes dominate (abundance > 80%) and are characterized by a 6-fold chelation of the vanadium(IV) ion by 4 RCO2(-) ligands at the equatorial positions and a H2O/R-OH ligand at the axial position. The different redox stabilities of these complexes, relative to that of dissolved O2 in the aqueous solution, is analyzed via (51)V NMR. It is shown that the oxidation rate is the highest for the oxalato-VO(2+) complexes. In addition, the stability of the VO(2+) complexes can be drastically improved by evacuation of the dissolved O2 from the solution and subsequent storage in a N2 ambient atmosphere. The vanadium oxide phase formation process, starting with the chemical solution deposition of the aqueous solutions and continuing with subsequent processing in an ambient 0.1% O2 atmosphere, differs for the two complexes. The oxalato-VO(2+) complexes turn into the oxygen-deficient crystalline VO2 B at 400 °C, which then turns into crystalline V6O13 at 500 °C. In contrast, the citrato-VO(2+) complexes form an amorphous film at 400 °C that crystallizes into VO2 M1 and V6O13 at 500 °C.

18.
Chem Commun (Camb) ; 49(88): 10358-10360, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24079009

RESUMEN

An effective procedure to synthesize sequence controlled oligoacrylates with up to four monomer insertions via the RAFT technique is presented. Two different sets of oligomers with a preferred monomer order were synthesized. Recycling SEC allowed for facile and automated purification of the monodisperse sequence-controlled materials.

20.
Biomed Microdevices ; 11(4): 893-901, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19353272

RESUMEN

A sensitive and low-cost microfluidic integrated biosensor is developed based on the localized surface plasmon resonance (LSPR) properties of gold nanoparticles, which allows label-free monitoring of biomolecular interactions in real-time. A novel quadrant detection scheme is introduced which continuously measures the change of the light transmitted through the nanoparticle-coated sensor surface. Using a green light emitting diode (LED) as a light source in combination with the quadrant detection scheme, a resolution of 10(-4) in refractive index units (RIU) is determined. This performance is comparable to conventional LSPR-based biosensors. The biological sensing is demonstrated using an antigen/antibody (biotin/anti-biotin) system with an optimized gold nanoparticle film. The immobilization of biotin on a thiol-based self-assembled monolayer (SAM) and the subsequent affinity binding of anti-biotin are quantitatively detected by the microfluidic integrated biosensor and a detection limit of 270 ng/mL of anti-biotin was achieved. The microfluidic chip is capable of transporting a precise amount of biological samples to the detection areas to achieve highly sensitive and specific biosensing with decreased reaction time and less reagent consumption. The obtained results are compared with those measured by a surface plasmon resonance (SPR)-based Biacore system for the same binding event. This study demonstrates the feasibility of the integration of LSPR-based biosensing with microfluidic technologies, resulting in a low-cost and portable biosensor candidate compared to the larger and more expensive commercial instruments.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Resonancia por Plasmón de Superficie/instrumentación , Resonancia por Plasmón de Superficie/métodos , Animales , Anticuerpos/química , Antígenos/química , Biotina/química , Oro/química , Humanos , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...