Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
STAR Protoc ; 3(3): 101575, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35880128

RESUMEN

Available mouse models for tuberculosis drug susceptibility testing requires using virulent biosafety-level-3 (BSL-3) Mycobacterium tuberculosis (Mtb) strains, or attenuated BSL-2 strains that lack virulence genes. Here, we present a BSL-2-compatible mouse model for tuberculosis drug susceptibility testing using the auxotrophic Mtb mc26206 strain, which retains all virulence genes. Using rifampicin and a new autophagy-boosting compound, SMIP-30, we provide a step-by-step guide for the infection, drug administration, and evaluation of Mtb burden and cytokine profiles. This protocol is easily adaptable for testing of other antibiotics and host-directed compounds. For complete details on the use and execution of this protocol, please refer to Berton et al. (2022).


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Ganglionar , Animales , Contención de Riesgos Biológicos , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Preparaciones Farmacéuticas
3.
J Vis Exp ; (102): e53152, 2015 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-26383144

RESUMEN

We have developed a screening platform to identify dedicated human protein kinases for phosphorylated substrates which can be used to elucidate novel signal transduction pathways. Our approach features the use of a library of purified GST-tagged human protein kinases and a recombinant protein substrate of interest. We have used this technology to identify MAP/microtubule affinity-regulating kinase 2 (MARK2) as the kinase for a glucose-regulated site on CREB-Regulated Transcriptional Coactivator 2 (CRTC2), a protein required for beta cell proliferation, as well as the Axl family of tyrosine kinases as regulators of cell metastasis by phosphorylation of the adaptor protein ELMO. We describe this technology and discuss how it can help to establish a comprehensive map of how cells respond to environmental stimuli.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Células HEK293 , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal , Factores de Transcripción/química
4.
Diabetologia ; 58(7): 1513-22, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25874445

RESUMEN

AIMS/HYPOTHESIS: Precise regulation of insulin secretion by the pancreatic beta cell is essential for the maintenance of glucose homeostasis. Insulin secretory activity is initiated by the stepwise breakdown of ambient glucose to increase cellular ATP via glycolysis and mitochondrial respiration. Knockout of Lkb1, the gene encoding liver kinase B1 (LKB1) from the beta cell in mice enhances insulin secretory activity by an undefined mechanism. Here, we sought to determine the molecular basis for how deletion of Lkb1 promotes insulin secretion. METHODS: To explore the role of LKB1 on individual steps in the insulin secretion pathway, we used mitochondrial functional analyses, electrophysiology and metabolic tracing coupled with by gas chromatography and mass spectrometry. RESULTS: Beta cells lacking LKB1 surprisingly display impaired mitochondrial metabolism and lower ATP levels following glucose stimulation, yet compensate for this by upregulating both uptake and synthesis of glutamine, leading to increased production of citrate. Furthermore, under low glucose conditions, Lkb1(-/-) beta cells fail to inhibit acetyl-CoA carboxylase 1 (ACC1), the rate-limiting enzyme in lipid synthesis, and consequently accumulate NEFA and display increased membrane excitability. CONCLUSIONS/INTERPRETATION: Taken together, our data show that LKB1 plays a critical role in coupling glucose metabolism to insulin secretion, and factors in addition to ATP act as coupling intermediates between feeding cues and secretion. Our data suggest that beta cells lacking LKB1 could be used as a system to identify additional molecular events that connect metabolism to cellular excitation in the insulin secretion pathway.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/metabolismo , Animales , Ácidos Grasos no Esterificados/sangre , Glucosa/deficiencia , Glucosa/farmacología , Glutamina/biosíntesis , Glutamina/metabolismo , Hipoglucemiantes/farmacología , Secreción de Insulina , Células Secretoras de Insulina , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Metabolómica , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética
5.
Nat Cell Biol ; 16(3): 234-44, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24561619

RESUMEN

Energy sensing by the AMP-activated protein kinase (AMPK) is of fundamental importance in cell biology. In the pancreatic ß-cell, AMPK is a central regulator of insulin secretion. The capacity of the ß-cell to increase insulin output is a critical compensatory mechanism in prediabetes, yet its molecular underpinnings are unclear. Here we delineate a complex consisting of the AMPK-related kinase SIK2, the CDK5 activator CDK5R1 (also known as p35) and the E3 ligase PJA2 essential for ß-cell functional compensation. Following glucose stimulation, SIK2 phosphorylates p35 at Ser 91, to trigger its ubiquitylation by PJA2 and promote insulin secretion. Furthermore, SIK2 accumulates in ß-cells in models of metabolic syndrome to permit compensatory secretion; in contrast, ß-cell knockout of SIK2 leads to accumulation of p35 and impaired secretion. This work demonstrates that the SIK2-p35-PJA2 complex is essential for glucose homeostasis and provides a link between p35-CDK5 and the AMPK family in excitable cells.


Asunto(s)
Células Secretoras de Insulina/fisiología , Fosfotransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Señalización del Calcio , Femenino , Glucosa/fisiología , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Masculino , Potenciales de la Membrana , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Ubiquitinación
6.
Endocrinology ; 154(7): 2308-17, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23677932

RESUMEN

Previous work in insulinoma cell lines has established that calcineurin plays a critical role in the activation of cAMP-responsive element binding protein (Creb), a key transcription factor required for ß-cell function and survival, by dephosphorylating the Creb coactivator Creb-regulated transcription coactivator (Crtc)2 at 2 regulatory sites, Ser171 and Ser275. Here, we report that Crtc2 is essential both for glucose-stimulated insulin secretion and cell survival in the ß-cell. Endogenous Crtc2 activation is achieved via increasing glucose levels to the physiological feeding range, indicating that Crtc2 is a sensor that couples ambient glucose concentrations to Creb activity in the ß-cell. Immunosuppressant drugs such as cyclosporin A and tacrolimus that target the protein phosphatase calcineurin are commonly administered after organ transplantation. Chronic use is associated with reduced insulin secretion and new onset diabetes, suggestive of pancreatic ß-cell dysfunction. Importantly, we show that overexpression of a Crtc2 mutant rendered constitutively active by introduction of nonphosphorylatable alanine residues at Ser171 and Ser275 permits Creb target gene activation under conditions when calcineurin is inhibited. Taken together, these data suggest that promoting Crtc2-Creb activity is required for ß-cell function and proliferation and promoting this pathway could ameliorate symptoms of new onset diabetes after transplantation.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Calcineurina/genética , Calcineurina/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Glucosa/farmacología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Reacción en Cadena de la Polimerasa , Receptores de Glucagón/agonistas , Técnicas de Cultivo de Tejidos , Factores de Transcripción/genética , Ponzoñas/farmacología
7.
Ann Neurol ; 72(2): 256-68, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22926856

RESUMEN

OBJECTIVE: Spinal muscular atrophy (SMA) is the number 1 genetic killer of young children. It is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although SMA is primarily a motor neuron disease, metabolism abnormalities such as metabolic acidosis, abnormal fatty acid metabolism, hyperlipidemia, and hyperglycemia have been reported in SMA patients. We thus initiated an in-depth analysis of glucose metabolism in SMA. METHODS: Glucose metabolism and pancreas development were investigated in the Smn(2B/-) intermediate SMA mouse model and type I SMA patients. RESULTS: Here, we demonstrate in an SMA mouse model a dramatic cell fate imbalance within pancreatic islets, with a predominance of glucagon-producing α cells at the expense of insulin-producing ß cells. These SMA mice display fasting hyperglycemia, hyperglucagonemia, and glucose resistance. We demonstrate similar abnormalities in pancreatic islets from deceased children with the severe infantile form of SMA in association with supportive evidence of glucose intolerance in at least a subset of such children. INTERPRETATION: Our results indicate that defects in glucose metabolism may play an important contributory role in SMA pathogenesis.


Asunto(s)
Glucemia/metabolismo , Trastornos del Metabolismo de la Glucosa/etiología , Enfermedades Pancreáticas/etiología , Atrofias Musculares Espinales de la Infancia/complicaciones , Factores de Edad , Animales , Animales Recién Nacidos , Apoptosis/genética , Glucemia/genética , Proliferación Celular , Modelos Animales de Enfermedad , Glucagón/sangre , Humanos , Etiquetado Corte-Fin in Situ , Insulina/sangre , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Enfermedades Pancreáticas/genética , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...