Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 35(1): 351-368, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36268892

RESUMEN

The highly diverse Solanaceae family contains several widely studied models and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative Physalis pruinosa and use these resources to study natural and engineered variations in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR-Cas9-targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system and establish a paradigm in the search for factors driving ICS.


Asunto(s)
Physalis , Solanaceae , Solanaceae/genética , Physalis/genética , Physalis/metabolismo , Evolución Biológica , Mutación , Edición Génica
2.
Biology (Basel) ; 10(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681168

RESUMEN

The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant growth and protection against both biotic and abiotic stresses. Signals and molecules produced during host-pathogen interactions have been proven to be involved in plant stress responses initiating signal pathways. Based on our previous research findings, the present study explored the possibility of additively or synergistically increasing plant stress resistance by stacking beneficial genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed either together or in combination with the feruloylesterase to study the effect of CW polysaccharide deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen, Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT) Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone compromised plant resistance, coexpression of feruloylesterase together with either one of the two acetylesterases restored plant resistance to the pathogen. These CW modifications induced several defense-related genes in uninfected healthy plants, confirming their impact on plant resistance. These results demonstrated that coexpression of complementary CW-modifying enzymes in different combinations have an additive effect on plant stress response by constitutively priming the plant defense pathways. These findings might be useful for generating valuable crops with higher protections against biotic stresses.

3.
Plants (Basel) ; 9(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198397

RESUMEN

Pectin is a critical component of the plant cell wall, supporting wall biomechanics and contributing to cell wall signaling in response to stress. The plant cell carefully regulates pectin methylesterification with endogenous pectin methylesterases (PMEs) and their inhibitors (PMEIs) to promote growth and protect against pathogens. We expressed Aspergillus nidulans pectin methylesterase (AnPME) in Arabidopsis thaliana plants to determine the impacts of methylesterification status on pectin function. Plants expressing AnPME had a roughly 50% reduction in methylester content compared with control plants. AnPME plants displayed a severe dwarf phenotype, including small, bushy rosettes and shorter roots. This phenotype was caused by a reduction in cell elongation. Cell wall composition was altered in AnPME plants, with significantly more arabinose and significantly less galacturonic acid, suggesting that plants actively monitor and compensate for altered pectin content. Cell walls of AnPME plants were more readily degraded by polygalacturonase (PG) alone but were less susceptible to treatment with a mixture of PG and PME. AnPME plants were insensitive to osmotic stress, and their susceptibility to Botrytis cinerea was comparable to wild type plants despite their compromised cell walls. This is likely due to upregulated expression of defense response genes observed in AnPME plants. These results demonstrate the importance of pectin in both normal growth and development, and in response to biotic and abiotic stresses.

4.
Methods Mol Biol ; 1917: 171-182, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30610636

RESUMEN

CRISPR-/Cas9-mediated gene editing has been demonstrated in a number of food crops including tomato. Tomato (Solanum lycopersicum) is both an important food crop and a model plant species that has been used extensively for studying gene function, especially as it relates to fruit biology. This duality in purpose combined with readily available resources (mutant populations, genome sequences, transformation methodology) makes tomato an ideal candidate for gene editing. The CRISPR/Cas9 system routinely used in our laboratory has been applied to various tomato genotypes and the wild species, Solanum pimpinellifolium. The vector system is based on Golden Gate cloning techniques. Cassettes that contain the neomycin phosphotransferase II (NPTII) selectable marker gene that confers resistance to kanamycin, a human codon-optimized Cas9 driven by the CaMV 35S promoter, and guide RNA (gRNA) under control of the Arabidopsis U6 polymerase promoter are assembled into a T-DNA vector. Generally, we design CRISPR/Cas9 constructs that contain two gRNAs per gene target. However, we have been successful with inclusion of up to eight gRNAs to simultaneously target multiple genes and regions. Introduction of CRISPR-/Cas9-designed constructs into tomato is accomplished by transformation methodology based on Agrobacterium tumefaciens infection of young cotyledon sections and selection on kanamycin-containing medium based on the presence of the NPTII gene. The approaches for the development of CRISPR/Cas9 constructs and genotypic analyses (PCR-based amplicon sequencing and T7 endonuclease) are detailed in this chapter.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Edición Génica/métodos , Genoma de Planta/genética , Solanum lycopersicum/genética , Sistemas CRISPR-Cas/genética , ARN Guía de Kinetoplastida/genética
6.
Nat Plants ; 4(10): 766-770, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30287957

RESUMEN

Genome editing holds great promise for increasing crop productivity, and there is particular interest in advancing breeding in orphan crops, which are often burdened by undesirable characteristics resembling wild relatives. We developed genomic resources and efficient transformation in the orphan Solanaceae crop 'groundcherry' (Physalis pruinosa) and used clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) to mutate orthologues of tomato domestication and improvement genes that control plant architecture, flower production and fruit size, thereby improving these major productivity traits. Thus, translating knowledge from model crops enables rapid creation of targeted allelic diversity and novel breeding germplasm in distantly related orphan crops.


Asunto(s)
Producción de Cultivos/métodos , Domesticación , Edición Génica/métodos , Physalis/genética , Arabidopsis/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Solanum lycopersicum/genética , Physalis/crecimiento & desarrollo , Plantas Modificadas Genéticamente
7.
Plant Mol Biol ; 96(4-5): 509-529, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29502299

RESUMEN

KEY MESSAGE: This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.


Asunto(s)
Arabidopsis/genética , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma/genética , Hidrolasas/metabolismo , Plantas Modificadas Genéticamente , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
8.
PLoS One ; 11(7): e0159757, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27448235

RESUMEN

Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes. Alterations in the cell wall composition created through either changes in biosynthesis of specific constituents or their post-synthetic modifications in the apoplast compromise cell wall integrity and frequently induce plant compensatory responses as a result of these alterations. Here we report that post-synthetic removal of fucose residues specifically from arabinogalactan proteins in the Arabidopsis plant cell wall induces differential expression of fucosyltransferases and leads to the root and hypocotyl elongation changes. These results demonstrate that the post-synthetic modification of cell wall components presents a valuable approach to investigate the potential signaling pathways induced during plant responses to such modifications that usually occur during plant development and stress responses.


Asunto(s)
Aspergillus nidulans/enzimología , Fucosiltransferasas/metabolismo , Mucoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Arabidopsis/genética , Proteínas de Arabidopsis , Aspergillus nidulans/genética , Pared Celular/genética , Pared Celular/metabolismo , Activación Enzimática , Fucosiltransferasas/genética , Expresión Génica , Regulación de la Expresión Génica , Mucoproteínas/genética , Mucoproteínas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas Recombinantes , alfa-L-Fucosidasa/metabolismo , Galactósido 2-alfa-L-Fucosiltransferasa
9.
Front Plant Sci ; 7: 630, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242834

RESUMEN

The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...