Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(19): 193804, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000398

RESUMEN

Low power optical phase tracking is an enabling capability for intersatellite laser interferometry, as minimum trackable power places significant constraints on mission design. Through the combination of laser stabilization and control-loop parameter optimization, we have demonstrated continuous tracking of a subfemtowatt optical field with a mean time between slips of more than 1000 s. Comparison with analytical models and numerical simulations verified that the observed experimental performance was limited by photon shot noise and unsuppressed laser frequency fluctuations. Furthermore, with two stabilized lasers, we have demonstrated 100 min of continuous phase tracking of Gravity Recovery and Climate Experiment (GRACE)-like signal dynamics with an optical carrier ranging in power between 1-7 fW with zero cycle slips. These results indicate the feasibility of future interspacecraft laser links operating with significantly reduced received optical power.

2.
Opt Express ; 30(19): 34933-34934, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242496

RESUMEN

We found a calculation error affecting the scaling of results presented in Figure 7 of our article "Absolute frequency readout derived from ULE cavity for next generation geodesy missions" [Opt. Express2926014 (2021)10.1364/OE.434483] . The corrected Figure 7 is published here.

3.
Opt Express ; 29(16): 26014-26027, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614915

RESUMEN

The next generation of Gravity Recovery and Climate Experiment (GRACE)-like dual-satellite geodesy missions proposals will rely on inter-spacecraft laser interferometry as the primary instrument to recover geodesy signals. Laser frequency stability is one of the main limits of this measurement and is important at two distinct timescales: short timescales over 10-1000 seconds to measure the local gravity below the satellites, and at the month to year timescales, where the subsequent gravity measurements are compared to indicate loss or gain of mass (or water and ice) over that period. This paper demonstrates a simple phase modulation scheme to directly measure laser frequency change over long timescales by comparing an on-board Ultra-Stable Oscillator (USO) clocked frequency reference to the Free Spectral Range (FSR) of the on-board optical cavity. By recording the fractional frequency variations the scale correction factor may be computed for a laser locked to a known longitudinal mode of the optical cavity. The experimental results demonstrate a fractional absolute laser frequency stability at the 10 ppb level (10-8) at time scales greater than 10 000 seconds, likely sufficient for next generation mission requirements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...