Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551961

RESUMEN

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Asunto(s)
Células Amacrinas , Adhesión Celular , Endocitosis , Fosfohidrolasa PTEN , Retina , Vía de Señalización Wnt , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Retina/metabolismo , Ratones , Células Amacrinas/metabolismo , Ratones Noqueados , Transporte de Proteínas , Proteínas Wnt/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética
2.
J Neurosci ; 43(49): 8367-8384, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37775301

RESUMEN

The nuclear factor one (NFI) transcription factor genes Nfia, Nfib, and Nfix are all enriched in late-stage retinal progenitor cells, and their loss has been shown to retain these progenitors at the expense of later-generated retinal cell types. Whether they play any role in the specification of those later-generated fates is unknown, but the expression of one of these, Nfia, in a specific amacrine cell type may intimate such a role. Here, Nfia conditional knockout (Nfia-CKO) mice (both sexes) were assessed, finding a massive and largely selective absence of AII amacrine cells. There was, however, a partial reduction in type 2 cone bipolar cells (CBCs), being richly interconnected to AII cells. Counts of dying cells showed a significant increase in Nfia-CKO retinas at postnatal day (P)7, after AII cell numbers were already reduced but in advance of the loss of type 2 CBCs detected by P10. Those results suggest a role for Nfia in the specification of the AII amacrine cell fate and a dependency of the type 2 CBCs on them. Delaying the conditional loss of Nfia to the first postnatal week did not alter AII cell number nor differentiation, further suggesting that its role in AII cells is solely associated with their production. The physiological consequences of their loss were assessed using the ERG, finding the oscillatory potentials to be profoundly diminished. A slight reduction in the b-wave was also detected, attributed to an altered distribution of the terminals of rod bipolar cells, implicating a role of the AII amacrine cells in constraining their stratification.SIGNIFICANCE STATEMENT The transcription factor NFIA is shown to play a critical role in the specification of a single type of retinal amacrine cell, the AII cell. Using an Nfia-conditional knockout mouse to eliminate this population of retinal neurons, we demonstrate two selective bipolar cell dependencies on the AII cells; the terminals of rod bipolar cells become mis-stratified in the inner plexiform layer, and one type of cone bipolar cell undergoes enhanced cell death. The physiological consequence of this loss of the AII cells was also assessed, finding the cells to be a major contributor to the oscillatory potentials in the electroretinogram.


Asunto(s)
Células Amacrinas , Factores de Transcripción NFI , Retina , Animales , Femenino , Masculino , Ratones , Células Amacrinas/metabolismo , Electrorretinografía , Factores de Transcripción NFI/metabolismo , Retina/metabolismo , Células Bipolares de la Retina , Factores de Transcripción/metabolismo
3.
Front Neurosci ; 17: 1078168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816119

RESUMEN

Sequence variants modulating gene function or expression affect various heritable traits, including the number of neurons within a population. The present study employed a forward-genetic approach to identify candidate causal genes and their sequence variants controlling the number of one type of retinal neuron, the AII amacrine cell. Data from twenty-six recombinant inbred (RI) strains of mice derived from the parental C57BL/6J (B6/J) and A/J laboratory strains were used to identify genomic loci regulating cell number. Large variation in cell number is present across the RI strains, from a low of ∼57,000 cells to a high of ∼87,000 cells. Quantitative trait locus (QTL) analysis revealed three prospective controlling genomic loci, on Chromosomes (Chrs) 9, 11, and 19, each contributing additive effects that together approach the range of variation observed. Composite interval mapping validated two of these loci, and chromosome substitution strains, in which the A/J genome for Chr 9 or 19 was introgressed on a B6/J genetic background, showed increased numbers of AII amacrine cells as predicted by those two QTL effects. Analysis of the respective genomic loci identified candidate controlling genes defined by their retinal expression, their established biological functions, and by the presence of sequence variants expected to modulate gene function or expression. Two candidate genes, Dtx4 on Chr 19, being a regulator of Notch signaling, and Dixdc1 on Chr 9, a modulator of the WNT-ß-catenin signaling pathway, were explored in further detail. Postnatal overexpression of Dtx4 was found to reduce the frequency of amacrine cells, while Dixdc1 knockout retinas contained an excess of AII amacrine cells. Sequence variants in each gene were identified, being the likely sources of variation in gene expression, ultimately contributing to the final number of AII amacrine cells.

4.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36537573

RESUMEN

The population sizes of different retinal cell types vary between different strains of mice, and that variation can be mapped to genomic loci in order to identify its polygenic origin. In some cases, controlling genes act independently, whereas in other instances, they exhibit epistasis. Here, we identify an epistatic interaction revealed through the mapping of quantitative trait loci from a panel of recombinant inbred strains of mice. The population of retinal horizontal cells exhibits a twofold variation in number, mapping to quantitative trait loci on chromosomes 3 and 13, where these loci are shown to interact epistatically. We identify a prospective genetic interaction underlying this, mediated by the bHLH transcription factor Neurog2, at the chromosome 3 locus, functioning to repress the LIM homeodomain transcription factor Isl1, at the chromosome 13 locus. Using single and double conditional knockout mice, we confirm the countervailing actions of each gene, and validate in vitro a crucial role for two single nucleotide polymorphisms in the 5'UTR of Isl1, one of which yields a novel E-box, mediating the repressive action of Neurog2.


Asunto(s)
Sitios de Carácter Cuantitativo , Retina , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Recuento de Células , Mapeo Cromosómico , Epistasis Genética , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Estudios Prospectivos , Sitios de Carácter Cuantitativo/genética
5.
J Anat ; 243(2): 204-222, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35292986

RESUMEN

The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.


Asunto(s)
Dendritas , Retina , Ratones , Animales , Dendritas/fisiología , Células Amacrinas/fisiología , Axones
6.
Front Neuroanat ; 16: 944706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093292

RESUMEN

Multiple factors regulate the differentiation of neuronal morphology during development, including interactions with afferents, targets, and homotypic neighbors, as well as cell-intrinsic transcriptional regulation. Retinal bipolar cells provide an exemplary model system for studying the control of these processes, as there are 15 transcriptionally and morphologically distinct types, each extending their dendritic and axonal arbors in respective strata within the synaptic layers of the retina. Here we have examined the role of the transcription factor Sox5 in the control of the morphological differentiation of one type of cone bipolar cell (CBC), the Type 7 cell. We confirm selective expression of SOX5 in this single bipolar cell type, emerging at the close of the first post-natal week, prior to morphological differentiation. Conditional knockout mice were generated by crossing a bipolar cell-specific cre-expressing line with mice carrying floxed Sox5 alleles, as well as the Gustducin-gfp reporter which labels Type 7 CBCs. Loss of SOX5 was confirmed in the bipolar cell stratum, in GFP+ Type 7 cells. Such SOX5-deficient Type 7 cells differentiate axonal and dendritic arbors that are each reduced in areal extent. The axonal arbors exhibit sprouting in the inner plexiform layer (IPL), thereby extending their overall radial extent, while the dendritic arbors connect with fewer cone pedicles in the outer plexiform layer, showing an increase in the average number of dendritic contacts at each pedicle. SOX5-deficient Type 7 CBCs should therefore exhibit smaller receptive fields derived from fewer if now hyper-innervated pedicles, transmitting their signals across a broader depth through the IPL.

7.
J Neurosci ; 41(1): 103-117, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33208470

RESUMEN

Amacrine cells of the retina are conspicuously variable in their morphologies, their population demographics, and their ensuing functions. Vesicular glutamate transporter 3 (VGluT3) amacrine cells are a recently characterized type of amacrine cell exhibiting local dendritic autonomy. The present analysis has examined three features of this VGluT3 population, including their density, local distribution, and dendritic spread, to discern the extent to which these are interrelated, using male and female mice. We first demonstrate that Bax-mediated cell death transforms the mosaic of VGluT3 cells from a random distribution into a regular mosaic. We subsequently examine the relationship between cell density and mosaic regularity across recombinant inbred strains of mice, finding that, although both traits vary across the strains, they exhibit minimal covariation. Other genetic determinants must therefore contribute independently to final cell number and to mosaic order. Using a conditional KO approach, we further demonstrate that Bax acts via the bipolar cell population, rather than cell-intrinsically, to control VGluT3 cell number. Finally, we consider the relationship between the dendritic arbors of single VGluT3 cells and the distribution of their homotypic neighbors. Dendritic field area was found to be independent of Voronoi domain area, while dendritic coverage of single cells was not conserved, simply increasing with the size of the dendritic field. Bax-KO retinas exhibited a threefold increase in dendritic coverage. Each cell, however, contributed less dendrites at each depth within the plexus, intermingling their processes with those of neighboring cells to approximate a constant volumetric density, yielding a uniformity in process coverage across the population.SIGNIFICANCE STATEMENT Different types of retinal neuron spread their processes across the surface of the retina to achieve a degree of dendritic coverage that is characteristic of each type. Many of these types achieve a constant coverage by varying their dendritic field area inversely with the local density of like-type neighbors. Here we report a population of retinal amacrine cells that do not develop dendritic arbors in relation to the spatial positioning of such homotypic neighbors; rather, this cell type modulates the extent of its dendritic branching when faced with a variable number of overlapping dendritic fields to approximate a uniformity in dendritic density across the retina.


Asunto(s)
Células Amacrinas/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/fisiología , Dendritas/fisiología , Retina/citología , Retina/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Apoptosis/fisiología , Recuento de Células , Muerte Celular , Mapeo Cromosómico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Aferentes/fisiología , Sitios de Carácter Cuantitativo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/fisiología
8.
J Comp Neurol ; 528(13): 2135-2160, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32026463

RESUMEN

The various types of retinal neurons are each positioned at their respective depths within the retina where they are believed to be assembled as orderly mosaics, in which like-type neurons minimize proximity to one another. Two common statistical analyses for assessing the spatial properties of retinal mosaics include the nearest neighbor analysis, from which an index of their "regularity" is commonly calculated, and the density recovery profile derived from autocorrelation analysis, revealing the presence of an exclusion zone indicative of anti-clustering. While each of the spatial statistics derived from these analyses, the regularity index and the effective radius, can be useful in characterizing such properties of orderly retinal mosaics, they are rarely sufficient for conveying the natural variation in the self-spacing behavior of different types of retinal neurons and the extent to which that behavior generates uniform intercellular spacing across the mosaic. We consider the strengths and limitations of these and other spatial statistical analyses for assessing the patterning in retinal mosaics, highlighting a number of misconceptions and their frequent misuse. Rather than being diagnostic criteria for determining simply whether a population is "regular," they should be treated as descriptive statistics that convey variation in the factors that influence neuronal positioning. We subsequently apply multiple spatial statistics to the analysis of eight different mosaics in the mouse retina, demonstrating conspicuous variability in the degree of patterning present, from essentially random to notably regular. This variability in patterning has both a developmental as well as a functional significance, reflecting the rules governing the positioning of different types of neurons as the architecture of the retina is assembled, and the distinct mechanisms by which they regulate dendritic growth to generate their characteristic coverage and connectivity.


Asunto(s)
Células Amacrinas/fisiología , Dendritas/fisiología , Retina/citología , Retina/fisiología , Animales , Humanos , Ratones
9.
J Comp Neurol ; 528(14): 2283-2307, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32103501

RESUMEN

The retinas of nonmammalian vertebrates have cone photoreceptor mosaics that are often organized as highly patterned lattice-like distributions. In fishes, the two main lattice-like patterns are composed of double cones and single cones that are either assembled as interdigitized squares or as alternating rows. The functional significance of such orderly patterning is unknown. Here, the cone mosaics in two species of Soleidae flatfishes, the common sole and the Senegalese sole, were characterized and compared to those from other fishes to explore variability in cone patterning and how it may relate to visual function. The cone mosaics of the common sole and the Senegalese sole consisted of single, double, and triple cones in formations that differed from the traditional square mosaic pattern reported for other flatfishes in that no evidence of higher order periodicity was present. Furthermore, mean regularity indices for single and double cones were conspicuously lower than those of other fishes with "typical" square and row mosaics, but comparable to those of goldfish, a species with lattice-like periodicity in its cone mosaic. Opsin transcripts detected by quantitative polymerase chain reaction (sws1, sws2, rh2.3, rh2.4, lws, and rh1) were uniformly expressed across the retina of the common sole but, in the Senegalese sole, sws2, rh2.4, and rh1 were more prevalent in the dorsal retina. Microspectrophotometry revealed five visual pigments in the retina of the common sole [S(472), M(523), M(536), L(559), and rod(511)] corresponding to the repertoire of transcripts quantified except for sws1. Overall, these results indicate a loss of cone mosaic patterning in species that are primarily nocturnal or dwell in low light environments as is the case for the common sole and the Senegalese sole. The corollary is that lattice-like patterning of the cone mosaic may improve visual acuity. Ecological and physiological correlates derived from observations across multiple fish taxa that live in low light environments and do not possess lattice-like cone mosaics are congruent with this claim.


Asunto(s)
Tipificación del Cuerpo/fisiología , Peces Planos/anatomía & histología , Células Fotorreceptoras Retinianas Conos/citología , Animales , Especificidad de la Especie
10.
PLoS Biol ; 17(10): e3000492, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626642

RESUMEN

Naturally occurring cell death is a fundamental developmental mechanism for regulating cell numbers and sculpting developing organs. This is particularly true in the nervous system, where large numbers of neurons and oligodendrocytes are eliminated via apoptosis during normal development. Given the profound impact of death upon these two major cell populations, it is surprising that developmental death of another major cell type-the astrocyte-has rarely been studied. It is presently unclear whether astrocytes are subject to significant developmental death, and if so, how it occurs. Here, we address these questions using mouse retinal astrocytes as our model system. We show that the total number of retinal astrocytes declines by over 3-fold during a death period spanning postnatal days 5-14. Surprisingly, these astrocytes do not die by apoptosis, the canonical mechanism underlying the vast majority of developmental cell death. Instead, we find that microglia engulf astrocytes during the death period to promote their developmental removal. Genetic ablation of microglia inhibits astrocyte death, leading to a larger astrocyte population size at the end of the death period. However, astrocyte death is not completely blocked in the absence of microglia, apparently due to the ability of astrocytes to engulf each other. Nevertheless, mice lacking microglia showed significant anatomical changes to the retinal astrocyte network, with functional consequences for the astrocyte-associated vasculature leading to retinal hemorrhage. These results establish a novel modality for naturally occurring cell death and demonstrate its importance for the formation and integrity of the retinal gliovascular network.


Asunto(s)
Astrocitos/citología , Muerte Celular/genética , Microglía/citología , Retina/citología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatología , Comunicación Celular , Recuento de Células , Toxina Diftérica/toxicidad , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Hemorragia Retiniana/genética , Hemorragia Retiniana/metabolismo , Hemorragia Retiniana/fisiopatología , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Lab Invest ; 99(10): 1547-1560, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31101854

RESUMEN

Diabetic retinopathy is the most common microvascular complication of diabetes and is a major cause of blindness, but an understanding of the pathogenesis of the disease has been hampered by a lack of accurate animal models. Here, we explore the dynamics of retinal cellular changes in the Nile rat (Arvicanthis niloticus), a carbohydrate-sensitive model for type 2 diabetes. The early retinal changes in diabetic Nile rats included increased acellular capillaries and loss of pericytes that correlated linearly with the duration of diabetes. These vascular changes occurred in the presence of microglial infiltration but in the absence of retinal ganglion cell loss. After a prolonged duration of diabetes, the Nile rat also exhibits a spectrum of retinal lesions commonly seen in the human condition including vascular leakage, capillary non-perfusion, and neovascularization. Our longitudinal study documents a range and progression of retinal lesions in the diabetic Nile rat remarkably similar to those observed in human diabetic retinopathy, and suggests that this model will be valuable in identifying new therapeutic strategies.


Asunto(s)
Capilares/patología , Retinopatía Diabética/patología , Retina/patología , Animales , Progresión de la Enfermedad , Edema/patología , Estudios Longitudinales , Murinae
12.
Front Neurosci ; 12: 876, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559640

RESUMEN

The present study interrogated a quantitative trait locus (QTL) on Chr 4 associated with the population sizes of two types of bipolar cell in the mouse retina. This locus was identified by quantifying the number of rod bipolar cells and Type 2 cone bipolar cells across a panel of recombinant inbred (RI) strains of mice derived from two inbred laboratory strains, C57BL/6J (B6/J) and A/J, and mapping a proportion of that variation in cell number, for each cell type, to this shared locus. There, we identified the candidate gene X Kell blood group precursor related family member 8 homolog (Xkr8). While Xkr8 has no documented role in the retina, we localize robust expression in the mature retina via in situ hybridization, confirm its developmental presence via immunolabeling, and show that it is differentially regulated during the postnatal period between the B6/J and A/J strains using qPCR. Microarray analysis, derived from whole eye mRNA from the entire RI strain set, demonstrates significant negative correlation of Xkr8 expression with the number of each of these two types of bipolar cells, and the variation in Xkr8 expression across the strains maps a cis-eQTL, implicating a regulatory variant discriminating the parental genomes. Xkr8 plasmid electroporation during development yielded a reduction in the number of bipolar cells in the retina, while sequence analysis of Xkr8 in the two parental strain genomes identified a structural variant in the 3' UTR that may disrupt mRNA stability, and two SNPs in the promoter that create transcription factor binding sites. We propose that Xkr8, via its participation in mediating cell death, plays a role in the specification of bipolar cell number in the retina.

14.
Exp Eye Res ; 177: 208-212, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30240584

RESUMEN

Many types of retinal neuron modulate the distribution of their processes to ensure a uniform coverage of the retinal surface. Dendritic field area, for instance, is inversely related to the variation in cellular density for many cell types, observed either across retinal eccentricity or between different strains of mice that differ in cell number. Dopaminergic amacrine (DA) cells, by contrast, have dendritic arbors that bear no spatial relationship to the presence of their immediate homotypic neighbors, yet it remains to be determined whether their coverage upon the retina, as a population, is conserved across variation in their total number. The present study assessed the overall density of the dopaminergic plexus in the inner plexiform layer in the presence of large variation in the total number of DA cells, as well as their retinal dopamine content, to determine whether either of these features is conserved. We first compared these traits between two strains of mice (C57BL/6J and A/J) that exhibit a two-fold difference in DA cell number. We subsequently examined these same traits in littermate mice for which the pro-apoptotic Bax gene was either intact or knocked out, yielding a five-fold difference in DA cell number. In both comparisons, we found greater plexus density and DA content in the strain or condition with the greater number of DA cells. The population of DA cells, therefore, does not appear to self-regulate its process coverage to achieve a constant density as the DA mosaic is established during development, nor its functional dopamine content in maturity.


Asunto(s)
Células Amacrinas/citología , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Retina/metabolismo , Animales , Recuento de Células , Cromatografía Líquida de Alta Presión , Dendritas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína X Asociada a bcl-2/genética
15.
J Neurophysiol ; 120(4): 2121-2129, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30089022

RESUMEN

Cell-intrinsic factors, in conjunction with environmental signals, guide migration, differentiation, and connectivity during early development of neuronal circuits. Within the retina, inhibitory starburst amacrine cells (SBACs) comprise ON types with somas in the ganglion cell layer (GCL) and dendrites stratifying narrowly in the inner half of the inner plexiform layer (IPL) and OFF types with somas in the inner nuclear layer (INL) and dendrites stratifying narrowly in the outer half of the IPL. The transcription factor Sox2 is crucial to this subtype specification. Without Sox2, many ON-type SBACs destined for the GCL settle in the INL while many that reach the GCL develop bistratified dendritic arbors. This study asked whether ON-type SBACs in Sox2-conditional knockout retinas exhibit selective connectivity only with ON-type bipolar cells or their bistratified morphology allows them to connect to both ON and OFF bipolar cells. Physiological data demonstrate that these cells receive ON and OFF excitatory inputs, indicating that the ectopically stratified dendrites make functional synapses with bipolar cells. The excitatory inputs were smaller and more transient in Sox2-conditional knockout compared with wild type; however, inhibitory inputs appeared largely unchanged. Thus dendritic stratification, rather than cellular identification, may be the major factor that determines ON vs. OFF connectivity. NEW & NOTEWORTHY Conditional knockout of the transcription factor Sox2 during early embryogenesis converts a monostratifying starburst amacrine cell into a bistratifying starburst cell. Here we show that these bistratifying starburst amacrine cells form functional synaptic connections with both ON and OFF bipolar cells. This suggests that normal ON vs. OFF starburst connectivity may not require distinct molecular specification. Proximity alone may be sufficient to allow formation of functional synapses.


Asunto(s)
Células Amacrinas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transmisión Sináptica , Células Amacrinas/fisiología , Animales , Dendritas/metabolismo , Dendritas/fisiología , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción SOXB1/genética
16.
Front Neurosci ; 12: 285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867309

RESUMEN

Genetic variants modulate the numbers of various retinal cell types in mice. For instance, there is minimal variation in the number of rod bipolar cells (RBCs) in two inbred strains of mice (A/J and C57BL/6J), yet their F1 offspring contain significantly more RBCs than either parental strain. To investigate the genetic source of this variation, we mapped the variation in the number of RBCs across 24 genetically distinct recombinant inbred (RI) strains (the AXB/BXA strain-set), seeking to identify quantitative trait loci (QTL). We then sought to identify candidate genes and potential casual variants at those genomic loci. Variation in RBC number mapped to three genomic loci, each modulating cell number in excess of one-third of the range observed across the RI strains. At each of these loci, we identified candidate genes containing variants that might alter gene function or expression. The latter genes were also analyzed using a transcriptome database, revealing a subset for which expression correlated with variation in RBC number. Using an electroporation strategy, we demonstrate that early postnatal expression of one of them, Ggct (gamma-glutamyl cyclotransferase), modulates bipolar cell number. We identify candidate regulatory variants for this gene, finding a large structural variant (SV) in the putative promoter that reduces expression using a luciferase assay. This SV reducing Ggct expression in vitro is likely the causal variant within the gene associated with the variation in Ggct expression in vivo, implicating it as a quantitative trait variant (QTV) participating in the control of RBC number.

17.
Vis Neurosci ; 35: E003, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29905123

RESUMEN

The orderly spacing of retinal neurons is commonly regarded as a characteristic feature of retinal nerve cell populations. Exemplars of this property include the horizontal cells and the cholinergic amacrine cells, where individual cells minimize the proximity to like-type neighbors, yielding regularity in the patterning of their somata. Recently, two types of retinal bipolar cells in the mouse retina were shown to exhibit an order in their somal patterning no different from density-matched simulations constrained by soma size but being otherwise randomly distributed. The present study has now extended this finding to a type of retinal amacrine cell, the AII amacrine cell. Voronoi domain analysis revealed the patterning in the population of AII amacrine somata to be no different from density-matched and soma-size-constrained random simulations, while analysis of the density recovery profile showed AII amacrine cells to exhibit a minimal intercellular spacing identical to that for those random simulations: AII amacrine somata were positioned side-by-side as often as chance would predict. Regularity indexes and packing factors (PF) were far lower than those achieved by either the horizontal cells or cholinergic amacrine cells, with PFs also being comparable to those derived from the constrained random simulations. These results extend recent findings that call into question the widespread assumption that all types of retinal neurons are assembled as regular somal arrays, and have implications for the way in which AII amacrine cells must distribute their processes to ensure a uniform coverage of the retinal surface.


Asunto(s)
Células Amacrinas/citología , Células Bipolares de la Retina/citología , Animales , Cuerpo Celular/fisiología , Recuento de Células , Dendritas/fisiología , Ratones , Ratones Endogámicos C57BL
18.
Glia ; 66(3): 623-636, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178409

RESUMEN

Sox2 is a transcriptional regulator that is highly expressed in retinal astrocytes, yet its function in these cells has not previously been examined. To understand its role, we conditionally deleted Sox2 from the population of astrocytes and examined the consequences on retinal development. We found that Sox2 deletion does not alter the migration of astrocytes, but it impairs their maturation, evidenced by the delayed upregulation of glial fibrillary acidic protein (GFAP) across the retina. The centro-peripheral gradient of angiogenesis is also delayed in Sox2-CKO retinas. In the mature retina, we observed lasting abnormalities in the astrocytic population evidenced by the sporadic loss of GFAP immunoreactivity in the peripheral retina as well as by the aberrant extension of processes into the inner retina. Blood vessels in the adult retina are also under-developed and show a decrease in the frequency of branch points and in total vessel length. The developmental relationship between maturing astrocytes and angiogenesis suggests a causal relationship between the astrocytic loss of Sox2 and the vascular architecture in maturity. We suggest that the delay in astrocytic maturation and vascular invasion may render the retina hypoxic, thereby causing the abnormalities we observe in adulthood. These studies uncover a novel role for Sox2 in the development of retinal astrocytes and indicate that its removal can lead to lasting changes to retinal homeostasis.


Asunto(s)
Astrocitos/metabolismo , Retina/crecimiento & desarrollo , Vasos Retinianos/crecimiento & desarrollo , Factores de Transcripción SOXB1/metabolismo , Animales , Astrocitos/citología , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones Transgénicos , Retina/citología , Retina/metabolismo , Vasos Retinianos/citología , Vasos Retinianos/metabolismo , Factores de Transcripción SOXB1/genética
19.
J Comp Neurol ; 526(3): 467-479, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29071714

RESUMEN

The present study has taken advantage of publicly available cell type specific mRNA expression databases in order to identify potential genes participating in the development of retinal AII amacrine cells. We profile two such genes, Delta/Notch-like EGF repeat containing (Dner) and nuclear factor I/A (Nfia), that are each heavily expressed in AII amacrine cells in the mature mouse retina, and which conjointly identify this retinal cell population in its entirety when using antibodies to DNER and NFIA. DNER is present on the plasma membrane, while NFIA is confined to the nucleus, consistent with known functions of each of these two proteins. DNER also identifies some other subsets of retinal ganglion and amacrine cell types, along with horizontal cells, while NFIA identifies a subset of bipolar cells as well as Muller glia and astrocytes. During early postnatal development, NFIA labels astrocytes on the day of birth, AII amacrine cells at postnatal (P) day 5, and Muller glia by P10, when horizontal cells also transiently exhibit NFIA immunofluorescence. DNER, by contrast, is present in ganglion and amacrine cells on P1, also labeling the horizontal cells by P10. Developing AII amacrine cells exhibit accumulating DNER labeling at the dendritic stalk, labeling that becomes progressively conspicuous by P10, as it is in maturity. This developmental time course is consistent with a prospective role for each gene in the differentiation of AII amacrine cells.


Asunto(s)
Células Amacrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Transcripción NFI/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Retina/citología , Retina/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Recuento de Células , Ratones , Ratones Endogámicos C57BL
20.
PLoS One ; 12(3): e0173455, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257490

RESUMEN

Retinal OFF bipolar cells show distinct connectivity patterns with photoreceptors in the wild-type mouse retina. Some types are cone-specific while others penetrate further through the outer plexiform layer (OPL) to contact rods in addition to cones. To explore dendritic stratification of OFF bipolar cells in the absence of rods, we made use of the 'cone-full' Nrl-/- mouse retina in which all photoreceptor precursor cells commit to a cone fate including those which would have become rods in wild-type retinas. The dendritic distribution of OFF bipolar cell types was investigated by confocal and electron microscopic imaging of immunolabeled tissue sections. The cells' dendrites formed basal contacts with cone terminals and expressed the corresponding glutamate receptor subunits at those sites, indicating putative synapses. All of the four analyzed cell populations showed distinctive patterns of vertical dendritic invasion through the OPL. This disparate behavior of dendritic extension in an environment containing only cone terminals demonstrates type-dependent specificity for dendritic outgrowth in OFF bipolar cells: rod terminals are not required for inducing dendritic extension into distal areas of the OPL.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Dendríticas/ultraestructura , Proteínas del Ojo/genética , Células Bipolares de la Retina/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Sinapsis/ultraestructura , Animales , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Ratones , Ratones Noqueados , Microscopía Electrónica , Células Bipolares de la Retina/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/ultraestructura , Células Fotorreceptoras Retinianas Bastones/metabolismo , Sinapsis/genética , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...