Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Energy Lett ; 9(4): 1617-1623, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633996

RESUMEN

A hierarchical transparent back contact leveraging an AlGaOx passivating layer, Ti3C2Tx MXene with a high work function, and a transparent cracked film lithography (CFL) templated nanogrid is demonstrated on copper-free cadmium telluride (CdTe) devices. AlGaOx improves device open-circuit voltage but reduces the fill factor when using a CFL-templated metal contact. Including a Ti3C2Tx interlayer improves the fill factor, lowers detrimental Schottky barriers, and enables metallization with CFL by providing transverse conduction into the nanogrid. The bifacial performance of an AlGaOx/Ti3C2Tx/CFL gold contact is evaluated, reaching 19.5% frontside efficiency and 2.8% backside efficiency under 1-sun illumination for a copper-free, group-V doped CdTe device. Under dual illumination, device power generation reached 200 W/m2 with 0.1 sun backside illumination.

2.
Small ; 19(28): e2301939, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010046

RESUMEN

Bifacial CdTe solar cells with greater power density than the monofacial baselines are demonstrated by using a CuGaOx rear interface buffer that passivates while reducing sheet resistance and contact resistance. Inserting CuGaOx between the CdTe and Au increases mean power density from 18.0 ± 0.5 to 19.8 ± 0.4 mW cm-2 for one sun front illumination. However, coupling CuGaOx with a transparent conductive oxide leads to an electrical barrier. Instead, CuGaOx is integrated with cracked film lithography (CFL)-patterned metal grids. CFL grid wires are spaced narrowly enough (≈10 µm) to alleviate semiconductor resistance while retaining enough passivation and transmittance for a bifacial power gain: bifacial CuGaOx /CFL grids generate 19.1 ± 0.6 mW cm-2 for 1 sun front + 0.08 sun rear illumination and 20.0 ± 0.6 mW cm-2 at 1 sun front + 0.52 sun rear-the highest reported power density at field albedo conditions for a scaled polycrystalline absorber.

3.
iScience ; 25(7): 104531, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35784795

RESUMEN

Improving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting. We use this method to show that while Si cells outperform both CdTe and GaInP cells under terrestrial AM1.5G solar irradiance, CdTe and GaInP cells outperform Si cells at depths >2 m, with GaInP cells operating with underwater efficiencies approaching 54%.

4.
Science ; 377(6603): 265-266, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857598

RESUMEN

An inorganic halide perovskite solar cell architecture promises multiyear stability.

5.
ACS Appl Mater Interfaces ; 13(1): 1682-1692, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33378148

RESUMEN

For many flexible electronic and photonic devices, moisture stability is one of the most important factors that affects its short- and long-term performance. To maintain the performance, the device should be packaged in such a way that it hermetically blocks moisture from the device; however, in practice, it is rather difficult to achieve. The more practical solution is to impede the moisture ingress to the device. In optoelectronic devices that will be outdoors like solar cells, the interfacial adhesion strength between the encapsulant layer (adhesive) and a moisture barrier layer is also a critical parameter. This paper presents surface modifications of poly(ethylene terephthalate) (PET) carrier films, one of the layers in the trilayer barrier film that directly adheres to an encapsulant, using chemical, UV/ozone, and both treatments to improve adhesion with the thermoset encapsulant polymer material. Whereas previous studies also utilized treatment methods to increase the wettability characteristics, in this paper, we not only present the results of the adhesion strength upon various techniques to achieve good adhesion but also screen their behavior upon exposure to a damp-heat (60 °C, 90% RH) environment. We found that the combined treatment method increases the adhesion by up to 12.1-fold and demonstrates up to a 200% increase in adhesion strength even upon our severe damp-heat environmental condition.

6.
ACS Appl Mater Interfaces ; 12(23): 25895-25902, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396321

RESUMEN

Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se2 cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.

7.
Langmuir ; 36(17): 4630-4636, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275439

RESUMEN

The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5-2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.

8.
Science ; 364(6439): 475-479, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31000592

RESUMEN

All-perovskite-based polycrystalline thin-film tandem solar cells have the potential to deliver efficiencies of >30%. However, the performance of all-perovskite-based tandem devices has been limited by the lack of high-efficiency, low-band gap tin-lead (Sn-Pb) mixed-perovskite solar cells (PSCs). We found that the addition of guanidinium thiocyanate (GuaSCN) resulted in marked improvements in the structural and optoelectronic properties of Sn-Pb mixed, low-band gap (~1.25 electron volt) perovskite films. The films have defect densities that are lower by a factor of 10, leading to carrier lifetimes of greater than 1 microsecond and diffusion lengths of 2.5 micrometers. These improved properties enable our demonstration of >20% efficient low-band gap PSCs. When combined with wider-band gap PSCs, we achieve 25% efficient four-terminal and 23.1% efficient two-terminal all-perovskite-based polycrystalline thin-film tandem solar cells.

9.
ACS Appl Mater Interfaces ; 11(13): 13003-13010, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30848583

RESUMEN

Interfaces at the front of superstrate CdTe-based solar cells are critical to carrier transport, recombination, and device performance, yet determination of the chemical structure of these nanoscale regions has remained elusive. This is partly due to changes that occur at the front interfaces during high temperature growth and substantive changes occurring during postdeposition processing. In addition, these buried interfaces are extremely difficult to access in a way that preserves chemical information. In this work, we use a recently developed thermomechanical cleaving technique paired with X-ray photoelectron spectroscopy to probe oxidation states at the SnO2 interface of CdTe solar cells. We show that the tin oxide front electrode promotes the formation of nanometer-scale oxides of tellurium and sulfur. Most oxidation occurs during CdCl2/O2 activation. Surprisingly, we show that relatively low-temperature anneals (180-260 °C) used to diffuse and activate copper acceptors in a doping/back contact process also cause significant changes in oxidation at the front of the cell, providing a heretofore missing aspect of how back contact processes can modify device transport, recombination, and performance. Device performance is shown to correlate with the extent of tellurium and sulfur oxidation within this nanometer-scale region. Mechanisms responsible for these beneficial effects are proposed.

10.
Environ Sci Technol ; 53(3): 1680-1689, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30532953

RESUMEN

Floating photovoltaic (FPV) systems, also called floatovoltaics, are a rapidly growing emerging technology application in which solar photovoltaic (PV) systems are sited directly on water. The water-based configuration of FPV systems can be mutually beneficial: Along with providing such benefits as reduced evaporation and algae growth, it can lower PV operating temperatures and potentially reduce the costs of solar energy generation. Although there is growing interest in FPV, to date there has been no systematic assessment of technical potential in the continental United States. We provide the first national-level estimate of FPV technical potential using a combination of filtered, large-scale datasets, site-specific PV generation models, and geospatial analytical tools. We quantify FPV co-benefits and siting considerations, such as land conservation, coincidence with high electricity prices, and evaporation rates. Our results demonstrate the potential of FPV to contribute significantly to the U.S. electric sector, even using conservative assumptions. A total of 24 419 man-made water bodies, representing 27% of the number and 12% of the area of man-made water bodies in the contiguous United States, were identified as being suitable for FPV generation. FPV systems covering just 27% of the identified suitable water bodies could produce almost 10% of current national generation. Many of these eligible bodies of water are in water-stressed areas with high land acquisition costs and high electricity prices, suggesting multiple benefits of FPV technologies.


Asunto(s)
Energía Solar , Electricidad , Luz Solar , Estados Unidos
11.
ACS Appl Mater Interfaces ; 10(51): 44854-44861, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30488692

RESUMEN

Controlled delamination of thin-film photovoltaics (PV) post-growth can reveal interfaces that are critical to device performance yet are poorly understood because of their inaccessibility within the device stack. In this work, we demonstrate a technique to lift off thin-film solar cells from their glass substrates in a clean, reproducible manner by first laminating a polymeric backsheet to the device and then thermally shocking the system at low temperatures ( T ≤ -30 °C). To enable clean delamination of diverse thin-film architectures, a theoretical framework is developed and key process control parameters are identified. Focusing on cadmium telluride (CdTe) devices, we show that the lamination temperature and device architecture control the quality of lift-off, while the rate at which the film stack is removed is controlled by the delamination temperature. Crack-free CdTe devices are removed and successfully recontacted, recovering up to 80% of the original device efficiency. The areal density of these devices is ∼0.4 kg m-2, a reduction of over an order of magnitude relative to their initial weight on glass. The framework developed here provides a pathway toward both the development of inexpensive, flexible PV with high specific power and the study of previously buried interfaces in thin-film architectures.

12.
ACS Appl Mater Interfaces ; 9(24): 20561-20565, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28499090

RESUMEN

In this study we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO2/emitter interface. An unexpectedly high concentration of chlorine at this interface, ∼20%, was determined from a calculation that assumed a uniform chlorine distribution. Angle-resolved X-ray photoelectron spectroscopy was used to further probe the structure of the chlorine-containing layer, revealing that both sides of the cleave location are covered by one-third of a unit cell of pure CdCl2, a thickness corresponding to about one Cl-Cd-Cl molecular layer. We interpret this result in the context of CdCl2 being a true layered material similar to transition-metal dichalcogenides. Exposing cleaved surfaces to water shows that this Cl-Cd-Cl trilayer is soluble, raising questions pertinent to cell reliability. Our work provides new and unanticipated details about the structure and chemistry of front surface interfaces and should prove important to improving materials, processes, and reliability of next-generation CdTe-based solar cells.

13.
Nano Lett ; 17(2): 1020-1027, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28068765

RESUMEN

We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ∼1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (Eg = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm2 in prototype devices.

14.
Nanoscale ; 7(15): 6556-66, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25790468

RESUMEN

Semiconducting single-walled carbon nanotubes (s-SWCNTs) are promising candidates as the active layer in photovoltaics (PV), particularly for niche applications where high infrared absorbance and/or semi-transparent solar cells are desirable. Most current fabrication strategies for SWCNT PV devices suffer from relatively high surface roughness and lack nanometer-scale deposition precision, both of which may hamper the reproducible production of ultrathin devices. Additionally, detailed optical models of SWCNT PV devices are lacking, due in part to a lack of well-defined optical constants for high-purity s-SWCNT thin films. Here, we present an optical model that accurately reconstructs the shape and magnitude of spectrally resolved external quantum efficiencies for ultrathin (7,5) s-SWCNT/C60 solar cells that are deposited by ultrasonic spraying. The ultrasonic spraying technique enables thickness tuning of the s-SWCNT layer with nanometer-scale precision, and consistently produces devices with low s-SWCNT film average surface roughness (Rq of <5 nm). Our optical model, based entirely on measured optical constants of each layer within the device stack, enables quantitative predictions of thickness-dependent relative photocurrent contributions of SWCNTs and C60 and enables estimates of the exciton diffusion lengths within each layer. These results establish routes towards rational performance improvements and scalable fabrication processes for ultra-thin SWCNT-based solar cells.

15.
Rev Sci Instrum ; 85(7): 075102, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25085168

RESUMEN

The development of state-of-the-art barrier films and encapsulation schema for displays and photovoltaics requires precise measurement of water vapor permeation as quickly as possible. We have demonstrated improvements to our electrical, Ca-trace-based water vapor transmission rate measurement technique without introducing any additional cost or sample handling concerns. Most importantly, the contacting scheme was changed so that the effective length of the sensor traces can be more precisely determined making the contact resistance between the Ca and Au/Ti films far less likely to affect the results. A 4-pt contacting pattern was also applied to the internal (non-data) witness trace. This expanded the potential utility of the witness trace from just an indicator for the integrity of the sample assembly, to also being used to compensate for measurement error. Lastly, we increased the relative precision of our resistance measurements by implementing a Ca sensor trace with significantly higher resistance. Principally, these changes produce significant measurement improvements for permeation rates less than 10(-4) g/m(2)/day, by lowering the noise floor, reducing required measurement time, and increasing the reproducibility of this test method.

16.
Rev Sci Instrum ; 84(2): 025109, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23464253

RESUMEN

The development of flexible organic light emitting diode displays and flexible thin film photovoltaic devices is dependent on the use of flexible, low-cost, optically transparent and durable barriers to moisture and∕or oxygen. It is estimated that this will require high barriers with water vapor transmission rates (WVTR) between 10(-4) and 10(-6) g∕m(2)∕day. Thus, there is a need to develop a relatively fast, low cost, and quantitative method to evaluate such low permeation rates. Prior works have demonstrated that Ca films, because they change optically and electrically upon reaction with moisture, can be used as a sensor, enabling one to calculate a WVTR between 10 and 10(-6) g∕m(2)∕day or better. In this work, we analyze the accuracy of an electrical Ca test method. We focus on the effects of the addition of a diffusion spacer and the effects of interactions of edge-seal material with changes to the spacer contacting surface on the overall accuracy. Furthermore, we examine a series of factors that can lead to different errors resulting in qualitative rather than quantitative Ca test behavior. We demonstrate that accurate, relatively high throughput, and reproducible measurements are possible for very low WVTR films in the 10(-6) g∕m(2)∕day range.

17.
Rev Sci Instrum ; 82(8): 085101, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21895269

RESUMEN

The development of flexible organic light emitting diode displays and flexible thin film photovoltaic devices is dependent on the use of flexible, low-cost, optically transparent and durable barriers to moisture and/or oxygen. It is estimated that this will require high moisture barriers with water vapor transmission rates (WVTR) between 10(-4) and 10(-6) g/m(2)/day. Thus there is a need to develop a relatively fast, low-cost, and quantitative method to evaluate such low permeation rates. Here, we demonstrate a method where the resistance changes of patterned Ca films, upon reaction with moisture, enable one to calculate a WVTR between 10 and 10(-6) g/m(2)/day or better. Samples are configured with variable aperture size such that the sensitivity and/or measurement time of the experiment can be controlled. The samples are connected to a data acquisition system by means of individual signal cables permitting samples to be tested under a variety of conditions in multiple environmental chambers. An edge card connector is used to connect samples to the measurement wires enabling easy switching of samples in and out of test. This measurement method can be conducted with as little as 1 h of labor time per sample. Furthermore, multiple samples can be measured in parallel, making this an inexpensive and high volume method for measuring high moisture barriers.

18.
ACS Appl Mater Interfaces ; 3(6): 2042-50, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21604784

RESUMEN

Defect engineering has been of vital importance to the development of inorganic semiconductors. Here, we report the chemical modification of electrical defects in the prototypical organic semiconductor, regioregular poly(3-hexylthiophene), P3HT. Previously, we have covalently treated defect sites with either a nucleophile or an electrophile, leaving the defects of primarily opposite polarity. Consecutively using both nucleophilic and electrophilic treatments allows us to covalently fix both positively and negatively charged defect sites in a single procedure. Here we describe the effects of treating P3HT first with lithium aluminum hydride, LAH, to decrease the overall defect density, and then with dimethylsulfate, Me(2)SO(4), to eliminate some of the remaining n-type defects (equivalent to a p-type doping process). The resulting polymer, P3HT_LAH_Me(2)SO(4), behaves differently than the polymer obtained when the order of treatments is reversed, P3HT_Me(2)SO(4)_LAH. Slightly improved structural and optical differences between these two new polymers and the starting P3HT are observed, whereas greatly improved electrical differences are found. Both treatments improve the performance of the photovoltaic cells, especially the short circuit current and the fill factor, and increase the stability against photodegradation. The significantly decreased series resistance and increased shunt resistance with a combined treatment suggest improved charge transport in the cell. The effective doping density can be increased or decreased with these treatments while the carrier mobility and the exciton diffusion length increase. It should be possible to employ these simple chemical treatments with any π-conjugated polymer to beneficially modify, or eliminate, some of its electronic defects. As a consequence, our approach provides a new method of improving the air-stability and electrical characteristics for organic photovoltaic and other electronic applications.


Asunto(s)
Electroquímica/métodos , Fotoquímica/métodos , Tiofenos/química , Titanio/química
19.
Nat Mater ; 8(3): 208-12, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19202546

RESUMEN

So far, one of the fundamental limitations of organic photovoltaic (OPV) device power conversion efficiencies (PCEs) has been the low voltage output caused by a molecular orbital mismatch between the donor polymer and acceptor molecules. Here, we present a means of addressing the low voltage output by introducing novel trimetallic nitride endohedral fullerenes (TNEFs) as acceptor materials for use in photovoltaic devices. TNEFs were discovered in 1999 by Stevenson et al. ; for the first time derivatives of the TNEF acceptor, Lu(3)N@C(80), are synthesized and integrated into OPV devices. The reduced energy offset of the molecular orbitals of Lu(3)N@C(80) to the donor, poly(3-hexyl)thiophene (P3HT), reduces energy losses in the charge transfer process and increases the open circuit voltage (Voc) to 260 mV above reference devices made with [6,6]-phenyl-C(61)-butyric methyl ester (C(60)-PCBM) acceptor. PCEs >4% have been observed using P3HT as the donor material. This work clears a path towards higher PCEs in OPV devices by demonstrating that high-yield charge separation can occur with OPV systems that have a reduced donor/acceptor lowest unoccupied molecular orbital energy offset.

20.
Nano Lett ; 8(10): 3488-92, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18729414

RESUMEN

We describe here a simple, all-inorganic metal/NC/metal sandwich photovoltaic (PV) cell that produces an exceptionally large short-circuit photocurrent (>21 mA cm(-2)) by way of a Schottky junction at the negative electrode. The PV cell consists of a PbSe NC film, deposited via layer-by-layer (LbL) dip coating that yields an EQE of 55-65% in the visible and up to 25% in the infrared region of the solar spectrum, with a spectrally corrected AM1.5G power conversion efficiency of 2.1%. This NC device produces one of the largest short-circuit currents of any nanostructured solar cell, without the need for sintering, superlattice order or separate phases for electron and hole transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...