Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 288(31): 22399-407, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23792966

RESUMEN

The mannose-binding lectin associated-protease-3 (MASP-3) is a member of the lectin pathway of the complement system, a key component of human innate and active immunity. Mutations in MASP-3 have recently been found to be associated with Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome, a severe developmental disorder manifested by cleft palate, intellectual disability, and skeletal abnormalities. However, the molecular basis for MASP-3 function remains to be understood. Here we characterize the substrate specificity of MASP-3 by screening against a combinatorial peptide substrate library. Through this approach, we successfully identified a peptide substrate that was 20-fold more efficiently cleaved than any other identified to date. Furthermore, we demonstrated that mutant forms of the enzyme associated with 3MC syndrome were completely inactive against this substrate. To address the structural basis for this defect, we determined the 2.6-Å structure of the zymogen form of the G666E mutant of MASP-3. These data reveal that the mutation disrupts the active site and perturbs the position of the catalytic serine residue. Together, these insights into the function of MASP-3 reveal how a mutation in this enzyme causes it to be inactive and thus contribute to the 3MC syndrome.


Asunto(s)
Anomalías Múltiples/enzimología , Blefaroptosis/enzimología , Anomalías Craneofaciales/enzimología , Craneosinostosis/enzimología , Criptorquidismo/enzimología , Cristalografía por Rayos X/métodos , Anomalías del Ojo/enzimología , Cardiopatías Congénitas/enzimología , Luxación Congénita de la Cadera/enzimología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Estrabismo/enzimología , Músculos Abdominales/anomalías , Músculos Abdominales/enzimología , Discapacidades del Desarrollo/enzimología , Activación Enzimática , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
2.
J Biol Chem ; 286(49): 42180-42187, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21990366

RESUMEN

The ovine footrot pathogen, Dichelobacter nodosus, secretes three subtilisin-like proteases that play an important role in the pathogenesis of footrot through their ability to mediate tissue destruction. Virulent and benign strains of D. nodosus secrete the basic proteases BprV and BprB, respectively, with the catalytic domain of these enzymes having 96% sequence identity. At present, it is not known how sequence variation between these two putative virulence factors influences their respective biological activity. We have determined the high resolution crystal structures of BprV and BprB. These data reveal that that the S1 pocket of BprV is more hydrophobic but smaller than that of BprB. We show that BprV is more effective than BprB in degrading extracellular matrix components of the host tissue. Mutation of two residues around the S1 pocket of BprB to the equivalent residues in BprV dramatically enhanced its proteolytic activity against elastin substrates. Application of a novel approach for profiling substrate specificity, the Rapid Endopeptidase Profiling Library (REPLi) method, revealed that both enzymes prefer cleaving after hydrophobic residues (and in particular P1 leucine) but that BprV has more restricted primary substrate specificity than BprB. Furthermore, for P1 Leu-containing substrates we found that BprV is a significantly more efficient enzyme than BprB. Collectively, these data illuminate how subtle changes in D. nodosus proteases may significantly influence tissue destruction as part of the ovine footrot pathogenesis process.


Asunto(s)
Proteínas Bacterianas/química , Dichelobacter nodosus/metabolismo , Panadizo Interdigital/metabolismo , Serina Endopeptidasas/química , Subtilisina/química , Aminoácidos/química , Animales , Rojo Congo/farmacología , Cristalización , Cristalografía por Rayos X/métodos , Fibronectinas/química , Humanos , Cinética , Leucina/química , Modelos Biológicos , Modelos Moleculares , Fenilalanina/química , Estructura Terciaria de Proteína , Ovinos
3.
PLoS Pathog ; 6(11): e1001210, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21124876

RESUMEN

Many bacterial pathogens produce extracellular proteases that degrade the extracellular matrix of the host and therefore are involved in disease pathogenesis. Dichelobacter nodosus is the causative agent of ovine footrot, a highly contagious disease that is characterized by the separation of the hoof from the underlying tissue. D. nodosus secretes three subtilisin-like proteases whose analysis forms the basis of diagnostic tests that differentiate between virulent and benign strains and have been postulated to play a role in virulence. We have constructed protease mutants of D. nodosus; their analysis in a sheep virulence model revealed that one of these enzymes, AprV2, was required for virulence. These studies challenge the previous hypothesis that the elastase activity of AprV2 is important for disease progression, since aprV2 mutants were virulent when complemented with aprB2, which encodes a variant that has impaired elastase activity. We have determined the crystal structures of both AprV2 and AprB2 and characterized the biological activity of these enzymes. These data reveal that an unusual extended disulphide-tethered loop functions as an exosite, mediating effective enzyme-substrate interactions. The disulphide bond and Tyr92, which was located at the exposed end of the loop, were functionally important. Bioinformatic analyses suggested that other pathogenic bacteria may have proteases that utilize a similar mechanism. In conclusion, we have used an integrated multidisciplinary combination of bacterial genetics, whole animal virulence trials in the original host, biochemical studies, and comprehensive analysis of crystal structures to provide the first definitive evidence that the extracellular secreted proteases produced by D. nodosus are required for virulence and to elucidate the molecular mechanism by which these proteases bind to their natural substrates. We postulate that this exosite mechanism may be used by proteases produced by other bacterial pathogens of both humans and animals.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dichelobacter nodosus/patogenicidad , Disulfuros/metabolismo , Panadizo Interdigital/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Serina Endopeptidasas/metabolismo , Enfermedades de las Ovejas/microbiología , Virulencia/fisiología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dichelobacter nodosus/enzimología , Dichelobacter nodosus/genética , Panadizo Interdigital/enzimología , Infecciones por Bacterias Gramnegativas/enzimología , Mutación/genética , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Ovinos , Enfermedades de las Ovejas/enzimología , Especificidad por Sustrato , Subtilisina/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 284(6): H1978-84, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12609826

RESUMEN

The closely related metalloendopeptidases EC (EP24.15; thimet oligopeptidase) and 24.16 (EP24.16; neurolysin) cleave a number of vasoactive peptides such as bradykinin and neurotensin in vitro. We have previously shown that hypotensive responses to bradykinin are potentiated by an inhibitor of EP24.15 and EP24.16 (26), suggesting a role for one or both enzymes in bradykinin metabolism in vivo. In this study, we have used selective inhibitors that can distinguish between EP24.15 and EP24.16 to determine their activity in cultured endothelial cells (the transformed human umbilical vein endothelial hybrid cell line EA.hy926 or ovine aortic endothelial cells). Endopeptidase activity was assessed using a specific quenched fluorescent substrate [7-methoxycoumarin-4-acetyl-Pro-Leu-Gly-d-Lys(2,4-dinitrophenyl)], as well as the peptide substrates bradykinin and neurotensin (assessed by high-performance liquid chromatography with mass spectroscopic detection). Our results indicate that both peptidases are present in endothelial cells; however, EP24.16 contributes significantly more to substrate cleavage by both cytosolic and membrane preparations, as well as intact cells, than EP24.15. These findings, when coupled with previous observations in vivo, suggest that EP24.16 activity in vascular endothelial cells may play an important role in the degradation of bradykinin and/or other peptides in the circulation.


Asunto(s)
Endotelio Vascular/metabolismo , Metaloendopeptidasas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Bradiquinina/metabolismo , Bradiquinina/farmacología , Membrana Celular/enzimología , Células Cultivadas , Cromatografía Líquida de Alta Presión , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Colorantes Fluorescentes , Hidrólisis , Espectrometría de Masas , Neurotensina/metabolismo , Inhibidores de Proteasas/farmacología , Ratas , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...