Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 209: 115418, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36693437

RESUMEN

Myeloperoxidase (MPO) is a heme-containing peroxidase from phagocytic cells, which plays an important role in the innate immune response. The primary anti-microbial function of MPO is achieved by catalyzing the oxidation of halides by hydrogen peroxide (H2O2). Upon activation of phagocytes, MPO activity is detectable in both phagosomes and extracellularly, where it can remain or transcytose into interstitial compartments. Activated MPO leads to oxidative stress and tissue damage in many inflammatory states, including cardiovascular disease. Starting from a low molecular weight (LMW) high throughput screening (HTS) hit, here we report the discovery of a novel pyrrolidinone indole (IN-4) as a highly potent MPO inhibitor. This compound displays similar in vitro potency across peroxidation, plasma and NETosis assays. In a dilution/dialysis study, <5% of the original MPO activity was detected post-incubation of MPO with IN-4, suggesting irreversible enzyme inhibition. A fast MPO inactivation rate (kinact/Ki) and low partition ratio (k3/k4) make IN-4 kinetic properties attractive for an MPO inhibitor. This compound also displays significant selectivity over the closely related thyroid peroxidase (TPO), and is selective for extracellular MPO over intracellular (neutrophil) MPO. Moreover, IN-4 shows good exposure, low clearance and high oral bioavailability in mice, rats and dogs. The high in vitro MPO activity and high oral exposure observed with IN-4 result in a dose-dependent inhibition of MPO activity in three mouse models of inflammation. In conclusion, IN-4 is a novel, potent, mechanism-based and selective MPO inhibitor, which may be used as superior therapeutic agent to treat multiple inflammatory conditions, including cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Peroxidasa , Ratas , Ratones , Animales , Perros , Peróxido de Hidrógeno , Antioxidantes , Indoles , Pirrolidinonas
2.
Bioorg Med Chem ; 28(12): 115548, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32503688

RESUMEN

Myeloperoxidase (MPO) activity and subsequent generation of hypochlorous acid has been associated with the killing of host-invading microorganisms (e.g. bacteria, viruses, and fungi). However, during oxidative stress, high MPO activity can damage host tissue and is linked to several chronic inflammatory conditions. Herein, we describe the development of a novel biaryl, indole-pyrazole series of irreversible mechanism-based inhibitors of MPO. Derived from an indole-containing high-throughput screen hit, optimization efforts resulted in potent and selective 6-substituted indoles with good oral bioavailability and in vivo activity.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Indoles/metabolismo , Peroxidasa/metabolismo , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Semivida , Indoles/química , Indoles/farmacocinética , Indoles/uso terapéutico , Ratones , Peritonitis/tratamiento farmacológico , Peritonitis/patología , Peroxidasa/antagonistas & inhibidores , Pirazoles/química , Pirazoles/metabolismo , Pirazoles/farmacocinética , Relación Estructura-Actividad
3.
J Pharmacol Exp Ther ; 367(1): 147-154, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30076263

RESUMEN

Myeloperoxidase (MPO) is a leukocyte-derived redox enzyme that has been linked to oxidative stress and damage in many inflammatory states, including cardiovascular disease. We have discovered aminopyridines that are potent mechanism-based inhibitors of MPO, with significant selectivity over the closely related thyroid peroxidase. 1-((6-Aminopyridin-3-yl)methyl)-3-(4-bromophenyl)urea (Aminopyridine 2) inhibited MPO in human plasma and blocked MPO-dependent vasomotor dysfunction ex vivo in rat aortic rings. Aminopyridine 2 also showed high oral bioavailability and inhibited MPO activity in vivo in a mouse model of peritonitis. Aminopyridine 2 could effectively be administered as a food admixture, making it an important tool for assessing the relative importance of MPO in preclinical models of chronic inflammatory disease.


Asunto(s)
Aminopiridinas/farmacología , Inhibidores Enzimáticos/farmacología , Peroxidasa/antagonistas & inhibidores , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Disponibilidad Biológica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
4.
Proc Natl Acad Sci U S A ; 112(9): 2888-93, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25695968

RESUMEN

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic ß cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total ß-cell mass, and the role of Gi-GPCRs in establishing ß-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates ß-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic ß cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal ß cells decreased ß-cell proliferation, reduced adult ß-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal ß-cell proliferation, increased adult ß-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult ß cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of ß-cell replication. These studies link Gi-GPCR signaling to ß-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase ß-cell mass in patients with diabetes.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Glucosa/genética , Glucosa/metabolismo , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Receptores Adrenérgicos alfa 2/genética
5.
Nat Med ; 19(11): 1505-12, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24076664

RESUMEN

Heterotopic ossification, the pathologic formation of extraskeletal bone, occurs as a common complication of trauma or in genetic disorders and can be disabling and lethal. However, the underlying molecular mechanisms are largely unknown. Here we demonstrate that Gαs restricts bone formation to the skeleton by inhibiting Hedgehog signaling in mesenchymal progenitor cells. In progressive osseous heteroplasia, a human disease caused by null mutations in GNAS, which encodes Gαs, Hedgehog signaling is upregulated in ectopic osteoblasts and progenitor cells. In animal models, we show that genetically-mediated ectopic Hedgehog signaling is sufficient to induce heterotopic ossification, whereas inhibition of this signaling pathway by genetic or pharmacological means strongly reduces the severity of this condition. As our previous work has shown that GNAS gain-of-function mutations upregulate WNT-ß-catenin signaling in osteoblast progenitor cells, resulting in their defective differentiation and fibrous dysplasia, we identify Gαs as a key regulator of proper osteoblast differentiation through its maintenance of a balance between the Wnt-ß-catenin and Hedgehog pathways. Also, given the results here of the pharmacological studies in our mouse model, we propose that Hedgehog inhibitors currently used in the clinic for other conditions, such as cancer, may possibly be repurposed for treating heterotopic ossification and other diseases caused by GNAS inactivation.


Asunto(s)
Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/deficiencia , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Proteínas Hedgehog/metabolismo , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Enfermedades Cutáneas Genéticas/genética , Enfermedades Cutáneas Genéticas/metabolismo , Animales , Enfermedades Óseas Metabólicas/patología , Diferenciación Celular , Cromograninas , Femenino , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación , Osificación Heterotópica/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Transducción de Señal , Enfermedades Cutáneas Genéticas/patología , Vía de Señalización Wnt , beta Catenina/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-23209148

RESUMEN

The skeleton as an organ is widely distributed throughout the entire vertebrate body. Wnt signaling has emerged to play major roles in almost all aspects of skeletal development and homeostasis. Because abnormal Wnt signaling causes various human skeletal diseases, Wnt signaling has become a focal point of intensive studies in skeletal development and disease. As a result, promising effective therapeutic agents for bone diseases are being developed by targeting the Wnt signaling pathway. Understanding the functional mechanisms of Wnt signaling in skeletal biology and diseases highlights how basic and clinical studies can stimulate each other to push a quick and productive advancement of the entire field. Here we review the current understanding of Wnt signaling in critical aspects of skeletal biology such as bone development, remodeling, mechanotransduction, and fracture healing. We took special efforts to place fundamentally important discoveries in the context of human skeletal diseases.


Asunto(s)
Desarrollo Óseo/fisiología , Enfermedades Óseas/fisiopatología , Huesos/anatomía & histología , Mecanotransducción Celular/fisiología , Osteoblastos/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Enfermedades Óseas/tratamiento farmacológico , Huesos/metabolismo , Cartílago/metabolismo , Cartílago/fisiología , Diferenciación Celular/fisiología , Curación de Fractura/fisiología , Humanos , Articulaciones/metabolismo , Articulaciones/fisiología , Osteoblastos/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(50): 20101-6, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22106277

RESUMEN

Skeletal dysplasias are common disabling disorders characterized by aberrant growth of bone and cartilage leading to abnormal skeletal structures and functions, often attributable to defects in skeletal progenitor cells. The underlying molecular and cellular mechanisms of most skeletal dysplasias remain elusive. Although the Wnt/ß-catenin signaling pathway is required for skeletal progenitor cells to differentiate along the osteoblastic lineage, inappropriately elevated levels of signaling can also inhibit bone formation by suppressing osteoblast maturation. Here, we investigate interactions of the four major Gα protein families (Gα(s), Gα(i/o), Gα(q/11), and Gα(12/13)) with the Wnt/ß-catenin signaling pathway and identify a causative role of Wnt/ß-catenin signaling in fibrous dysplasia (FD) of bone, a disease that exhibits abnormal differentiation of skeletal progenitor cells. The activating Gα(s) mutations that cause FD potentiated Wnt/ß-catenin signaling, and removal of Gα(s) led to reduced Wnt/ß-catenin signaling and decreased bone formation. We further show that activation of Wnt/ß-catenin signaling in osteoblast progenitors results in an FD-like phenotype and reduction of ß-catenin levels rescued differentiation defects of FD patient-derived stromal cells. Gα proteins may act at the level of ß-catenin destruction complex assembly by binding Axin. Our results indicate that activated Gα proteins differentially regulate Wnt/ß-catenin signaling but, importantly, are not required core components of Wnt/ß-catenin signaling. Our data suggest that activated Gα proteins are playing physiologically significant roles during both skeletal development and disease by modulating Wnt/ß-catenin signaling strength.


Asunto(s)
Displasia Fibrosa Ósea/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Vía de Señalización Wnt , Adulto , Animales , Células de la Médula Ósea/patología , Displasia Fibrosa Ósea/patología , Displasia Fibrosa Poliostótica/metabolismo , Displasia Fibrosa Poliostótica/patología , Humanos , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Fenotipo , Células Madre/metabolismo , Células Madre/patología , Células del Estroma/metabolismo , Células del Estroma/patología , Regulación hacia Arriba , beta Catenina/metabolismo
8.
Dev Cell ; 18(1): 25-38, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20152175

RESUMEN

We report an unexpected role for protease signaling in neural tube closure and the formation of the central nervous system. Mouse embryos lacking protease-activated receptors 1 and 2 showed defective hindbrain and posterior neuropore closure and developed exencephaly and spina bifida, important human congenital anomalies. Par1 and Par2 were expressed in surface ectoderm, and Par2 was expressed selectively along the line of closure. Ablation of G(i/z) and Rac1 function in these Par2-expressing cells disrupted neural tube closure, further implicating G protein-coupled receptors and identifying a likely effector pathway. Cluster analysis of protease and Par2 expression patterns revealed a group of membrane-tethered proteases often coexpressed with Par2. Among these, matriptase activated Par2 with picomolar potency, and hepsin and prostasin activated matriptase. Together, our results suggest a role for protease-activated receptor signaling in neural tube closure and identify a local protease network that may trigger Par2 signaling and monitor and regulate epithelial integrity in this context.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Desarrollo Embrionario/genética , Tubo Neural/embriología , Tubo Neural/metabolismo , Receptor PAR-2/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Sistema Nervioso Central/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Ratones , Ratones Mutantes , Tubo Neural/citología , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/fisiopatología , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptor PAR-2/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
9.
J Clin Invest ; 119(7): 1871-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19603543

RESUMEN

Maintenance of vascular integrity is critical for homeostasis, and temporally and spatially regulated vascular leak is a central feature of inflammation. Sphingosine-1-phosphate (S1P) can regulate endothelial barrier function, but the sources of the S1P that provide this activity in vivo and its importance in modulating different inflammatory responses are unknown. We report here that mutant mice engineered to selectively lack S1P in plasma displayed increased vascular leak and impaired survival after anaphylaxis, administration of platelet-activating factor (PAF) or histamine, and exposure to related inflammatory challenges. Increased leak was associated with increased interendothelial cell gaps in venules and was reversed by transfusion with wild-type erythrocytes (which restored plasma S1P levels) and by acute treatment with an agonist for the S1P receptor 1 (S1pr1). S1pr1 agonist did not protect wild-type mice from PAF-induced leak, consistent with plasma S1P levels being sufficient for S1pr1 activation in wild-type mice. However, an agonist for another endothelial cell Gi-coupled receptor, Par2, did protect wild-type mice from PAF-induced vascular leak, and systemic treatment with pertussis toxin prevented rescue by Par2 agonist and sensitized wild-type mice to leak-inducing stimuli in a manner that resembled the loss of plasma S1P. Our results suggest that the blood communicates with blood vessels via plasma S1P to maintain vascular integrity and regulate vascular leak. This pathway prevents lethal responses to leak-inducing mediators in mouse models.


Asunto(s)
Permeabilidad Capilar , Inflamación/metabolismo , Lisofosfolípidos/fisiología , Esfingosina/análogos & derivados , Animales , Transfusión de Eritrocitos , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Lisofosfolípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/fisiología , Factor de Activación Plaquetaria/farmacología , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/sangre , Esfingosina/fisiología
10.
Cell ; 135(3): 561-71, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18984166

RESUMEN

G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 nonodorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted previously unidentified roles for less-studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue, suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets.


Asunto(s)
Receptores Acoplados a Proteínas G/genética , Animales , Expresión Génica , Genoma , Lipólisis , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo
11.
J Clin Invest ; 117(12): 4034-43, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17992256

RESUMEN

The in vivo roles of the hundreds of mammalian G protein-coupled receptors (GPCRs) are incompletely understood. To explore these roles, we generated mice expressing the S1 subunit of pertussis toxin, a known inhibitor of G(i/o) signaling, under the control of the ROSA26 locus in a Cre recombinase-dependent manner (ROSA26(PTX)). Crossing ROSA26(PTX) mice to mice expressing Cre in pancreatic beta cells produced offspring with constitutive hyperinsulinemia, increased insulin secretion in response to glucose, and resistance to diet-induced hyperglycemia. This phenotype underscored the known importance of G(i/o) and hence of GPCRs for regulating insulin secretion. Accordingly, we quantified mRNA for each of the approximately 373 nonodorant GPCRs in mouse to identify receptors highly expressed in islets and examined the role of several. We report that 3-iodothyronamine, a thyroid hormone metabolite, could negatively and positively regulate insulin secretion via the G(i)-coupled alpha(2A)-adrenergic receptor and the G(s)-coupled receptor Taar1, respectively, and protease-activated receptor-2 could negatively regulate insulin secretion and may contribute to physiological regulation of glucose metabolism. The ROSA26(PTX) system used in this study represents a new genetic tool to achieve tissue-specific signaling pathway modulation in vivo that can be applied to investigate the role of G(i/o)-coupled GPCRs in multiple cell types and processes.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Toxina del Pertussis/biosíntesis , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Secreción de Insulina , Integrasas/genética , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética , Toxina del Pertussis/genética , Proteínas/genética , Sitios de Carácter Cuantitativo/genética , ARN no Traducido , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Tironinas/metabolismo
12.
Science ; 316(5822): 295-8, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17363629

RESUMEN

Lymphocytes require sphingosine-1-phosphate (S1P) receptor-1 to exit lymphoid organs, but the source(s) of extracellular S1P and whether S1P directly promotes egress are unknown. By using mice in which the two kinases that generate S1P were conditionally ablated, we find that plasma S1P is mainly hematopoietic in origin, with erythrocytes a major contributor, whereas lymph S1P is from a distinct radiation-resistant source. Lymphocyte egress from thymus and secondary lymphoid organs was markedly reduced in kinase-deficient mice. Restoration of S1P to plasma rescued egress to blood but not lymph, and the rescue required lymphocyte expression of S1P-receptor-1. Thus, separate sources provide S1P to plasma and lymph to help lymphocytes exit the low-S1P environment of lymphoid organs. Disruption of compartmentalized S1P signaling is a plausible mechanism by which S1P-receptor-1 agonists function as immunosuppressives.


Asunto(s)
Médula Ósea/metabolismo , Linfocitos/fisiología , Lisofosfolípidos/biosíntesis , Lisofosfolípidos/fisiología , Esfingosina/análogos & derivados , Animales , Quimiotaxis de Leucocito/fisiología , Cromatografía Liquida , Endotelio Vascular , Femenino , Células Madre Hematopoyéticas/metabolismo , Linfocitos/metabolismo , Lisofosfolípidos/sangre , Lisofosfolípidos/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/biosíntesis , Esfingosina/sangre , Esfingosina/deficiencia , Esfingosina/fisiología , Espectrometría de Masas en Tándem
13.
J Neurosci ; 24(16): 4092-103, 2004 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-15102925

RESUMEN

Vascular endothelium forms a continuous, semipermeable barrier that regulates the transvascular movement of hormones, macromolecules, and other solutes. Here, we describe a novel immediate early gene that is expressed selectively in vascular endothelial cells, verge (vascular early response gene). Verge protein includes an N-terminal region of approximately 70 amino acids with modest homology (approximately 30% identity) to Apolipoprotein L but is otherwise unique. Verge mRNA and protein are induced selectively in the endothelium of adult vasculature by electrical or chemical seizures. Verge expression appears to be responsive to local tissue conditions, because it is induced in the hemisphere ipsilateral to transient focal cerebral ischemia. In contrast to the transient expression in adult, Verge mRNA and protein are constitutively expressed at high levels in the endothelium of developing tissues (particularly heart) in association with angiogenesis. Verge mRNA is induced in cultured endothelial cells by defined growth factors and hypoxia. Verge protein is dramatically increased by cysteine proteinase inhibitors, suggesting rapid turnover, and is localized to focal regions near the periphery of the cells. Endothelial cell lines that stably express Verge form monolayers that show enhanced permeability in response to activation of protein kinase C by phorbol esters. This response is accompanied by reorganization of the actin cytoskeleton and the formation of paracellular gaps. These studies suggest that Verge functions as a dynamic regulator of endothelial cell signaling and vascular function.


Asunto(s)
Endotelio Vascular/metabolismo , Genes Inmediatos-Precoces/genética , Proteínas Inmediatas-Precoces/biosíntesis , Proteínas Inmediatas-Precoces/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Isquemia Encefálica/metabolismo , Hipoxia de la Célula , Permeabilidad de la Membrana Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Activadores de Enzimas/farmacología , Regulación del Desarrollo de la Expresión Génica/fisiología , Sustancias de Crecimiento/farmacología , Humanos , Ratones , Datos de Secuencia Molecular , Miocardio/metabolismo , Neovascularización Fisiológica/genética , Especificidad de Órganos , Proteína Quinasa C/metabolismo , ARN Mensajero/biosíntesis , Ratas , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Homología de Secuencia de Aminoácido , Transfección
14.
DNA Seq ; 14(6): 399-405, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15018348

RESUMEN

Thrombomodulin (TM), a component of the protein C anticoagulant pathway, is critical for the maintenance of vascular thromboresistance. To facilitate the study of in vivo TM regulation, we cloned and sequenced the cDNA encoding full-length rabbit TM. Translation of the open reading frame predicts a 580 amino acid protein that contains a 19 amino acid signal peptide, one lectin-like and six EGF-like extracellular domains, a 23 amino acid transmembrane domain and a 36 amino acid cytoplasmic domain. In addition, there are three potential N-linked and six O-linked glycosylation sites. Comparison of the predicted rabbit TM protein with those of human, mouse and rat reveals 67-72% primary sequence conservation with identical domain homology. TM gene expression was quantified in rabbit cardiovascular tissue by real-time PCR using primers and probe based on the derived cDNA sequence and found to correlate with protein expression as determined by Western blot analysis.


Asunto(s)
Clonación Molecular , Miocardio/metabolismo , Trombomodulina/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , ADN Complementario/genética , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Venas Yugulares/trasplante , Datos de Secuencia Molecular , Conejos , Ratas , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Trombomodulina/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...