Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695399

RESUMEN

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Asunto(s)
Suero de Mantequilla , Queso , Cabras , Lipidómica , Suero Lácteo , Animales , Suero de Mantequilla/análisis , Queso/análisis , Suero Lácteo/química , Fosfolípidos/análisis , Fosfolípidos/química , Glucolípidos/química , Leche/química , Gotas Lipídicas/química , Glicoproteínas/química , Glicoproteínas/análisis , Lípidos/química , Lípidos/análisis
2.
Compr Rev Food Sci Food Saf ; 23(3): e13368, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38720574

RESUMEN

Spoilage and deterioration of aquatic products during storage are inevitable, posing significant challenges to their suitability for consumption and the sustainability of the aquatic products supply chain. Research on the nonthermal processing of fruit juices, probiotics, dairy products, and meat has demonstrated positive outcomes in preserving quality. This review examines specific spoilage bacteria species and mechanisms for various aquatic products and discusses the principles, characteristics, and applications of six nonthermal processing methods for bacterial inhibition to maintain microbiological safety and physicochemical quality. The primary spoilage bacteria groups differ among fish, crustaceans, and shellfish based on storage conditions and durations. Four metabolic pathways utilized by spoilage microorganisms-peptides and amino acids, nitrogen compounds, nucleotides, and carbohydrates-are crucial in explaining spoilage. Nonthermal processing techniques, such as ultrahigh pressure, irradiation, magnetic/electric fields, plasma, and ultrasound, can inactivate microorganisms, thereby enhancing microbiological safety, physicochemical quality, and shelf life. Future research may integrate nonthermal processing with other technologies (e.g., modified atmosphere packaging and omics) to elucidate mechanisms of spoilage and improve the storage quality of aquatic products.


Asunto(s)
Manipulación de Alimentos , Microbiología de Alimentos , Animales , Manipulación de Alimentos/métodos , Conservación de Alimentos/métodos , Inocuidad de los Alimentos/métodos , Alimentos Marinos/microbiología , Alimentos Marinos/normas , Bacterias , Mariscos/microbiología , Mariscos/normas , Productos Lácteos/microbiología , Productos Lácteos/normas , Probióticos , Peces/microbiología
3.
Int J Biol Macromol ; 268(Pt 1): 131618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631593

RESUMEN

This study aims to fabricate composite gels using nano citrus fiber (Nano-CF) derived from the hydrolysis process of citric acid (CA) with FeCl3, with a simultaneous exploration of its potential as an substitute to fats. Investigation of varying FeCl3 concentrations (0.01 to 0.03 mmol/g of CA) revealed a significant enhancement in the water-holding and oil-retention capacity of the Nano-CF. The meticulous synthesis of the composite gels involved integrating nano citrus fibers with konjac glucomannan (KGM) through high-speed shearing, followed by a comprehensive evaluation of its microstructure and physicochemical attributes. Increasing the Nano-CF concentration within the gels led to a synergistic interaction with KGM, resulting in enhanced viscosity, improved thermal stability, and restricted water molecule mobility within the system. The gels initially displayed reduced firmness, resilience, and adhesive characteristics, followed by subsequent improvement. When the ratio of Nano-CF to KGM was 0.5:1, the composite gels exhibited texture parameters, viscosity, and viscoelastic stability comparable to whipped animal cream formulations. These findings provide a new idea for the application of Nano-CF/KGM composite gels in whipped cream.


Asunto(s)
Ácido Cítrico , Compuestos Férricos , Geles , Mananos , Mananos/química , Hidrólisis , Ácido Cítrico/química , Viscosidad , Geles/química , Compuestos Férricos/química , Cloruros/química , Citrus/química , Reología
4.
Int J Biol Macromol ; 268(Pt 1): 131705, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643916

RESUMEN

Rice protein is highly nutritious and easy to digest and absorb. Its hydrolyzed peptides have significant effects on lowering blood pressure and cholesterol. First, a detailed and comprehensive explanation of rice protein extraction methods was given, and it was found that the combination of enzymatic and physical methods could improve the extraction rate of rice protein, but it was only suitable for laboratory studies. Second, the methods for improving the functional properties of rice protein were introduced, including physical modification, chemical modification, and enzymatic modification. Enzymatic modification of the solubility of rice protein to improve its functional properties has certain limitations due to the low degree of hydrolysis, the long time required, the low utilization of the enzyme, and the possible undesirable taste of the product. Finally, the development and utilization of rice protein was summarized and the future research direction was suggested. This paper lists the advantages and disadvantages of various extraction techniques, points out the shortcomings of existing extraction techniques, aims to fill the gap in the field of rice protein extraction, and then provides a possible improvement method for the extraction and development of rice protein in the future.


Asunto(s)
Oryza , Proteínas de Plantas , Oryza/química , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Solubilidad , Hidrólisis , Fraccionamiento Químico/métodos
5.
Gels ; 10(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38391428

RESUMEN

In the actual production process of soy protein isolate (SPI), most of the homogeneous operating pressure is controlled below 20 MPa due to the consideration of production safety and the limitation of the pressure control capability of homogeneous equipment. In order to improve the functional properties of SPI and adapt it to actual production, the effects of different homogeneous pressures (4, 8, 10, 12, and 14 MPa) on the structure and gel properties of SPI were studied from the perspective of production control. Compared to the control group, the modified SPI improved the hardness, springiness, cohesiveness, chewiness, and water holding capacity (WHC) of the protein gel (p < 0.05). Rheological analysis shows that both G' and G″ increase with increasing frequency, reaching a maximum at 12 MPa. The gel intermolecular force results show that the disulfide bond, hydrophobic interaction, and non-disulfide bond are important molecular forces for gel formation. The particle size distribution uniformity of modified SPI was high, and scanning electron microscopy (SEM) analysis showed that the protein gel with a continuous uniform and dense network structure could be formed by high-pressure homogeneous modification. Overall, high-pressure homogenization technology has the potential to improve SPI gel structure and WHC, and 12 MPa modified SPI gel has the most significant effect.

6.
J Agric Food Chem ; 72(1): 933-945, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153029

RESUMEN

Buttermilk, a potential material used to produce milk fat globule membrane (MFGM), is obtained as a byproduct of butter making from milk whole cream and cheese whey cream. This study investigated the effects of rennet and acid coagulation on the protein profiles of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW). They were compared to those of whey cream buttermilk (WCB). Rennet coagulation was more efficient in removing casein, while retaining more IgG and lactoferrin than acid coagulation. BRW had more MFGM than BAW. Butyrophilin, xanthine dehydrogenase, and mucin1 were significantly higher (P < 0.05) in BRW, while fatty acid-binding protein 3 was enriched in BAW. KEGG analysis showed that complement and coagulation cascades had the greatest differences, and the abundance of proteins involved in this signaling pathway in BRW and BAW was higher, suggesting their potential anticoagulant and anti-inflammatory activity. BAW had higher apolipoprotein A4 and transcobalamin 2, which are essential carriers for transporting long-chain fatty acids and vitamin B12 from the intestine to the blood. Therefore, BAW intake might improve lipids and vitamin B12 absorption. This study can help deepen the understanding of protein composition of MFGM-enriched whey and facilitate the production of MFGM proteins for infants and old-aged populations.


Asunto(s)
Suero de Mantequilla , Queso , Productos Lácteos Cultivados , Animales , Humanos , Persona de Mediana Edad , Anciano , Suero Lácteo , Cabras , Proteómica , Glucolípidos/química , Proteína de Suero de Leche , Gotas Lipídicas , Vitamina B 12 , Proteínas de la Leche/química
7.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108638

RESUMEN

Natural polymers, such as polysaccharides and proteins, have been used to prepare several delivery systems owing to their abundance, bioactivity, and biodegradability. They are usually modified or combined with small molecules to form the delivery systems needed to meet different needs in food systems. This paper reviews the interactions of proteins, polysaccharides, and polyphenols in the bulk phase and discusses the design strategies, coupling techniques, and their applications as conjugates in emulsion delivery systems, including traditional, Pickering, multilayer, and high internal-phase emulsions. Furthermore, it explores the prospects of the application of conjugates in food preservation, food development, and nanocarrier development. Currently, there are seven methods for composite delivery systems including the Maillard reaction, carbodiimide cross-linking, alkali treatment, enzymatic cross-linking, free radical induction, genipin cross-linking, and Schiff base chemical cross-linking to prepare binary and ternary conjugates of proteins, polysaccharides, and polyphenols. To design an effective target complex and its delivery system, it is helpful to understand the physicochemical properties of these biomolecules and their interactions in the bulk phase. This review summarizes the knowledge on the interaction of biological complexes in the bulk phase, preparation methods, and the preparation of stable emulsion delivery system.

8.
Foods ; 12(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38137273

RESUMEN

Fish processing by-products such as frames, trimmings, and viscera of commercial fish species are rich in proteins. Thus, they could potentially be an economical source of proteins that may be used to obtain bioactive peptides and functional protein hydrolysates for the food and nutraceutical industries. The structure, composition, and biological activities of peptides and hydrolysates depend on the freshness and the actual composition of the material. Peptides isolated from fishery by-products showed antioxidant activity. Changes in hydrolysis parameters changed the sequence and properties of the peptides and determined their physiological functions. The optimization of the value of such peptides and the production costs must be considered for each particular source of marine by-products and for their specific food applications. This review will discuss the functional properties of fishery by-products prepared using hydrolysis and their potential food applications. It also reviews the structure-activity relationships of the antioxidant activity of peptides as well as challenges to the use of fishery by-products for protein hydrolysate production.

9.
ACS Omega ; 8(38): 35183-35192, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37780009

RESUMEN

Even with healthy foods, there is still a need to protect the functionality during processing. The stabilization and enrichment of fish oil (FO) extracted from fish fillets using solvent extraction might make this healthy oil more available. FO was stabilized by mixing it with chia seed oil (CSO) at 50:50 at room temperature. The antioxidant properties of the blends were evaluated using the total phenolic content (TPC), free radical scavenging activity (DPPH), ferric reducing antioxidant potential (FRAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities with FO and CSO as controls. The blends of FO and CSO increased the oxidative stability, while FO was the most susceptible to degradation. The stability and bioactivity of antioxidants against environmental factors were improved by using encapsulation. Response surface methodology (RSM) was used to optimize spray-drying operating conditions for spray-dried microcapsules (SDMs). The independent variables were the inlet air temperature (IAT), which varied from 125 to 185 °C; wall material (WM) concentration, which varied from 5 to 25%; pump speed (PS), which varied from 3 to 7 mL/min; and needle speed (NS), which varied from 3 to 11 s. The results indicated that the maximum antioxidant activity of SDM was obtained at 140 °C IAT, 10% WM, 4 mL/min PS, and 5 s NS, while the minimum value was obtained at 170 °C IAT, 20% WM, 6 mL/min PS, and 9 s NS. The IAT had a significant effect on the antioxidant activities, and the stability of SDMs was increased. These SDMs can be used in the formulation of food matrices due to their therapeutic and nutritional properties.

10.
Food Chem X ; 19: 100831, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780308

RESUMEN

In this study, oil-in-water emulsions stabilized by insoluble dietary fibre from citrus peel (CIDF) exhibited an obviously delayed lipid digestion property through gastrointestinal tract (GIT) model. Our results suggested that the rate and extent of lipid digestion greatly relied on particle sizes and concentrations of CIDF, and the inhibition effect of lipolysis was markedly enhanced with decreasing particle sizes and increasing CIDF levels. Furthermore, compared with Tween80-stabilized emulsion, the maximum inhibition extent of lipolysis was 38.77% for CIDF400-stabilized one at 0.4 wt% concentration. Effects of CIDFs on lipid digestion was mainly due to the formation of protective layers around oil droplets, further blocking the entry of lipase to the internal lipids, and/or attributed to the increasing viscosity of emulsions caused by CIDFs, finally limiting the transportation of some substances in the simulated small intestine digestion. Our research would provide useful references for the application of CIDF-stabilized emulsions in low-calorie food.

11.
Food Funct ; 14(13): 5936-5948, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37337869

RESUMEN

Chronic over-exposure to UV radiation leads to the damage of skin tissue. The aim of this study was to investigate the effects of collagen peptide (CP) and antioxidant (astaxanthin, vitamin C (Vc), and vitamin E (Ve)) combinations on skin photoaging. Forty male UV-induced BALB/c mice were randomized and fed saline or CP and antioxidants for 7 weeks using gavage feeding. The results showed that oral administration of CP, CP combined with Vc and Ve (VCE) or Haematococcus pluvialis extract (HPE) significantly (P < 0.05) reduced a* of mouse skin and increased the content of Hyp and type I collagen to varying degrees, thereby improving skin integrity. Furthermore, the combination of CP, HPE, and VCE showed increased upregulation of antioxidant enzyme expression, reduced serum ROS, and decreased inhibition of metalloproteinase expression compared to the other treatment groups. Thus, this combination showed better effects in inhibiting collagen degradation and maintaining the redox balance. The Nrf2/ARE and TGF-ß/Smad transcription systems are likely involved in these effects. Therefore, the results suggest that a diet containing CP, astaxanthin, and vitamins might be recommended to improve skin health and appearance.


Asunto(s)
Envejecimiento de la Piel , Tilapia , Masculino , Ratones , Animales , Antioxidantes/metabolismo , Tilapia/metabolismo , Rayos Ultravioleta/efectos adversos , Transducción de Señal , Colágeno/metabolismo , Piel , Factor de Crecimiento Transformador beta/metabolismo
12.
Gels ; 9(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37233011

RESUMEN

Problems with silver carp protein (SCP) include a strong fishy odor, low gel strength of SCP surimi, and susceptibility to gel degradation. The objective of this study was to improve the gel quality of SCP. The effects of the addition of native soy protein isolate (SPI) and SPI subjected to papain-restricted hydrolysis on the gel characteristics and structural features of SCP were studied. The ß-sheet structures in SPI increased after papain treatment. SPI treated with papain was crosslinked with SCP using glutamine transaminase (TG) to form a composite gel. Compared with the control, the addition of modified SPI increased the hardness, springiness, chewiness, cohesiveness, and water-holding capacity (WHC) of the protein gel (p < 0.05). In particular, the effects were most significant when the degree of SPI hydrolysis (DH) was 0.5% (i.e., gel sample M-2). The molecular force results demonstrated that hydrogen bonding, disulfide bonding, and hydrophobic association are important molecular forces in gel formation. The addition of the modified SPI increases the number of hydrogen bonds and the disulfide bonds. Scanning electron microscopy (SEM) analysis showed that the papain modifications allowed the formation of a composite gel with a complex, continuous, and uniform gel structure. However, the control of the DH is important as additional enzymatic hydrolysis of SPI decreased TG crosslinking. Overall, modified SPI has the potential to improve SCP gel texture and WHC.

13.
J Sci Food Agric ; 103(10): 5116-5125, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37002807

RESUMEN

BACKGROUND: Steamed bread is a popular staple food in China, and the significant regional differences of the microbiota in traditional starters make the flavor and quality of steamed bread highly variable along with long preparation times. Therefore, analyzing the microbial flora of traditional starters and their influences on the flavor and quality may help to solve the problems mentioned earlier, and it may also be conducive to potentially meet consumer needs and permit industrialization of this traditional fermented food. RESULTS: One hundred and thirty-two fungal and 50 bacterial species were identified in five traditional starters, each with a different dominant genus. The fermentation properties of dough showed that total titratable acid, dough volume and gas production increased and the pH decreased with fermentation time. The traditional starters improved the quality of Chinese steamed bread (CSB) including the crumb structure, specific volume and sensory attributes. Thirty-three aroma compounds with a VIP (variable importance for the projection) > 1 were identified as characteristic aroma compounds. The correlations among the microbiota, aroma and qualities of CSB showed a greater contribution from the bacteria, which was consistent with the predictions of metabolic pathways in the sequenced genomes. CONCLUSION: The quality of CSB fermented with traditional starters was improved induced by their different microbial profiles, and bacteria made a greater contribution than fungus to the aroma and qualities of CSB. © 2023 Society of Chemical Industry.


Asunto(s)
Pan , Microbiota , Bacterias/genética , Bacterias/metabolismo , Pan/análisis , Pan/microbiología , Fermentación , Odorantes
14.
Foods ; 12(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37107500

RESUMEN

The quality and safety of sufu fermented using Mucor racemosa M2 was studied and compared with naturally fermented sufu. After 90 days post-fermentation, both naturally fermented and inoculated fermented sufu reached the maturity standard of sufu, and the degree of protein hydrolysis of natural sufu (WP/TP: 34% ± 1%; AAN/TN: 33% ± 1%) was slightly higher than that of the inoculated sufu (WP/TP: 28.2% ± 0.4%; AAN/TN: 27% ± 1%). The hardness and adhesiveness of inoculated sufu (Hadness: 1063 g ± 211 g; Adhesiveness: -80 g ± 47 g) were significantly greater than those of natural sufu (Hadness: 790 g ± 57 g; Adhesiveness: -23 g ± 28 g), and the internal structure of natural sufu was denser and more uniform than that of inoculated sufu. A total of 50 aroma compounds were detected in natural and inoculated sufu. The total number of bacterial colonies in naturally fermented sufu was significantly higher than that in inoculated sufu, and the pathogenic bacteria in both types of fermented sufu were lower than the limit of pathogenic bacteria required in fermented soybean products. The content of biogenic amines in sufu was determined by high performance liquid chromatography (HPLC), and the results showed that the content of biogenic amines (Putrescine, Cadaverine, Histamine, Tyramine, etc.) in naturally fermented sufu was significantly higher than that in inoculated fermented sufu. Especially the histamine content, after 90 days of fermentation, was found to be 64.95 ± 4.55 for inoculated fertilization and 44.24 ± 0.71 for natural fertilization. Overall, the quality of inoculated sufu was somewhat better than that of natural sufu, and the M2 strain can be used to ferment sufu.

15.
Food Chem ; 416: 135865, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36905711

RESUMEN

In vitro coagulation and digestion of caprine and bovine micellar casein concentrate (MCC) with or without partial colloidal calcium depletion (deCa) were studied under simulated adult and elderly conditions. Gastric clots were smaller and looser for caprine than bovine MCC, and were further looser with deCa and under elderly condition for both caprine and bovine MCC. Casein hydrolysis and concomitant formation of large peptides was faster for caprine than bovine MCC, and with deCa and under adult condition for caprine and bovine MCC. Formation of free amino groups and small peptides were faster for caprine MCC, and with deCa and under adult condition. Upon intestinal digestion, proteolysis occurred rapidly, and was faster under adult condition, but showed less differences with increasing digestion between caprine and bovine MCC, and with and without deCa. These results suggested weakened coagulation and greater digestibility for caprine MCC and MCC with deCa under both conditions.


Asunto(s)
Caseínas , Micelas , Humanos , Animales , Bovinos , Anciano , Calcio , Cabras , Péptidos , Alérgenos , Digestión , Leche
16.
Foods ; 12(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36900435

RESUMEN

This study aimed to investigate the properties of acidic whey tofu gelatin generated from two acidic whey coagulants by pure fermentation of Lactiplantibacillus paracasei and L. plantarum, as well as the characteristics of acidic whey tofu. The optimal holding temperature and the amount of coagulants added were determined based on the pH, water-holding capacity, texture, microstructure, and rheological properties of tofu gelation. Then, the differences in quality between tofu produced by pure bacterial fermentation and by natural fermentation were investigated under optimal tofu gelatin preparation conditions. The tofu gelatin presented the best texture at 37 °C with a 10% addition of coagulants fermented by both L. paracasei and L. plantarum. Under these conditions, the coagulant produced by the fermentation of L. plantarum resulted in a shorter formation time and stronger tofu gelatin compared with that produced from L. paracasei. Tofu produced by the fermentation of L. paracasei had higher pH, less hardness, and a rougher network structure, whereas tofu produced by the fermentation of L. plantarum was closer to tofu produced by natural fermentation in terms of pH, texture, rheology, and microstructure.

17.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36779336

RESUMEN

The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.

18.
Food Res Int ; 163: 112183, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596125

RESUMEN

Soybeans are an important plant-based food but its beany flavor and anti-nutritional factors limit its consumption. Fermentation is an effective way to improve its flavor and nutrition. Furu is a popular fermented soybean curd and mainly manufactured in Asia, which has been consumed for thousands of years as an appetizer because of its attractive flavors. This review first classifies furu products on the basis of various factors; then, the microorganisms involved in its fermentation and their various functions are discussed. The mechanisms for the formation of aroma and taste compounds during fermentation are also discussed; and the microbial metabolites and their bioactivities are analyzed. Finally, future prospects and challenges are introduced and further research is proposed. This information is needed to protect the regional characteristics of furu and to regulate its consistent quality. The current information suggests that more in vivo experiments and further clinical trials are needed to confirm its safety and the microbial community needs to be optimized and standardized for each type of furu to improve the production process.


Asunto(s)
Alimentos de Soja , Alimentos de Soja/análisis , Fermentación , Glycine max/metabolismo , Microbiología de Alimentos , Percepción del Gusto
19.
Food Chem ; 409: 135269, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36586258

RESUMEN

Here, we prepared novel composite gels composed of citrus insoluble nanofiber and amylose, and examined their potential to be used as fat replacers and inhibit lipid digestion. We further evaluated the effect of different nanofiber/amylose ratios on the texture, thermal stability, water distribution, microstructure and lipid digestion of the composite gels. The addition of nanofiber improved the hardness, gumminess, viscoelasticity, thermal stability, and water-holding capacity of the composite gels, as well as strengthen their interpenetrating three-dimensional network. The gel prepared at a nanofiber/amylose ratio of 1:4 could provide an oral sensory perception similar to that of cream and therefore can be used as a potential fat replacer. Moreover, the emulsion stabilized by nanofiber/amylose could well inhibit lipid digestion, and the nanofiber/amylose ratio of 1:4 could achieve the minimum release amount of free fatty acids (55.81%). These findings provide a reference for the development of potential fat replacers.


Asunto(s)
Amilosa , Nanofibras , Geles/química , Agua , Lípidos
20.
Food Sci Technol Int ; 29(3): 195-203, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35075940

RESUMEN

To investigate the composition, physicochemical, functional, and structural properties of citrus insoluble dietary fiber concentrate from citrus peel affected by different particle sizes, citrus insoluble dietary fiber concentrate was modified by coarse crush and superfine grinding treatments. The results showed that the contents of hemicellulose and lignin significantly decrease and a significant increase in cellulose and insoluble dietary fiber contents with the reduction in particle size. In addition, the markedly decreased particle size and obviously microstructural changes of citrus insoluble dietary fiber concentrate powder were observed. The color value of citrus insoluble dietary fiber concentrate was observably improved, crystallinity and thermal stability of modified fiber slightly increase with the decrease in particle size, which is due to the partial elimination of hemicellulose and lignin after the treatments. However, water holding capacity, water swelling capacity, and oil holding capacity were found to be lower with the reduction in particle size, which might be attributed to the fact that superfine grinding treatment destroyed the structure integrity, thus causing some soluble components to break away from the cellulose backbone, or due to aggregation of smaller granules. The present study suggested that decreasing the particle size could effectively change some properties of citrus insoluble dietary fiber concentrate, which will provide new perspectives for the application of citrus insoluble dietary fiber concentrate in food products.


Asunto(s)
Citrus , Citrus/química , Tamaño de la Partícula , Fibras de la Dieta , Lignina , Celulosa , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...