Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chall ; 7(9): 2300053, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37745830

RESUMEN

Renewable energy technologies depend, to a large extent, on the efficiency of thermal energy storage (TES) devices. In such storage applications, molten salts constitute an attractive platform due to their thermal and environmentally friendly properties. However, the low thermal conductivity (TC) of these salts (<1 W m-1 K-1) downgrades the storage kinetics. A commonly used method to enhance TC is the addition of highly conductive carbon-based fillers that form a composite material with molten salt. However, even that enhancement is rather limited (<9 W m-1 K-1). In this study, the partial exfoliation of graphite to graphene nanoplatelets (GnP) in a molten salt matrix is explored as a means to address this problem. A novel approach of hybrid filler formation directly in the molten salt is used to produce graphite-GnP-salt hybrid composite material. The good dispersion quality of the fillers in the salt matrix facilitates bridging between large graphite particles by the smaller GnP particles, resulting in the formation of a thermally conductive network. The thermal conductivity of the hybrid composite (up to 44 W m-1 K-1) is thus enhanced by two orders of magnitude versus that of the pristine salt (0.64 W m-1 K-1).

2.
J Colloid Interface Sci ; 650(Pt B): 2024-2034, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536006

RESUMEN

Spatially and temporally localized delivery is a promising strategy to circumvent adverse effects of traditional drug therapy such as drug toxicity and prolonged treatments. Stimuli-responsive colloidal nanocarriers can be crucial to attain such goals. Here, we develop a delivery system based on dual light and pH responsive vesicles having a cationic bis-quat gemini surfactant, 12-2-12, and a negatively charged amphiphilic chalcone, C4SCh. The premise is to exploit the chalcone/flavylium interconversion to elicit a morphological change of the vesicles leading to the controlled release of an encapsulated drug. First, the phase behavior of the catanionic system is studied and the desirable composition yielding stable unilamellar vesicles identified and selected for further studies. The solutions containing vesicles (Dh ≈ 200 nm, ζ-potential ≈ 80 mV) are in-depth characterized by light microscopy, cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS) and surface tension measurements. Upon subjecting the vesicles to UV irradiation (λ = 365 nm) at near neutral pH (≈ 6.0), no morphological effects are observed, yet when irradiation is coupled with pH = 3.0, the majority of the vesicles are disrupted into bilayer fragments. The anticancer drug doxorubicin (DOX) is successfully entrapped in the non-irradiated vesicles, yielding an encapsulation efficiency of ≈ 25% and a loading capacity of ≈ 3%. The release profile of the drug-loaded vesicles is then studied in vitro in four conditions: i) no stimuli (pH = 6.0); ii) irradiation, pH = 6.0; iii) no irradiation and adjusted pH = 3.0; iv) irradiation and adjusted pH = 3.0 Crucially, irradiation at pH = 3.0 leads to a sustained release of DOX to ca. 80% (within 4 h), whereas cases i) and ii) lead to only ≈ 25 % release and case iii) to 50% release but precipitation of the vesicles. Thus, our initial hypothesis is confirmed: we present a proof of concept delivery system where light and pH act as inputs of an AND logic gate mechanism for the controlled release of a relevant biomedical drug (output). This may prove useful if the irradiated nanocarriers meet acidified physiological environments such as tumors sites, endosomes or lysosomes.


Asunto(s)
Chalconas , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos , Doxorrubicina/farmacología , Tensoactivos/química , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química
3.
Phys Chem Chem Phys ; 25(3): 2618-2628, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36602270

RESUMEN

The exfoliation of graphite to graphene nanoplatelets (GnP) in a molten salt medium is investigated in this study. It is shown that this mechanical force-free process yielded a large-sized GnP product (>15 microns) with a low defect density. The effect of the surface tension of the molten salt on graphite exfoliation efficiency was investigated for a series of alkali chloride salts (CsCl, KCl, NaCl and eutectic NaCl-KCl) at 850 °C. It was demonstrated that the produced GnP could be completely and easily separated from the salt. Molten salt with the lowest value of surface tension (CsCl) displayed the highest wettability of the graphitic layers and hence facilitated total exfoliation of the graphite to GnP. The exfoliation of graphite in molten salts is applicable in the thermal energy storage field, as well as in exfoliation of other layered materials. Herein, it is demonstrated that the thermal conductivity of the GnP-CsCl composite is enhanced by ∼300% compared to the neat salt.

4.
J Colloid Interface Sci ; 627: 587-595, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35872416

RESUMEN

HYPOTHESIS: Phase change materials have the potential for use in high-density thermal energy storage. However, their low thermal conductivity and the need for shape stabilization restrict their performances and implementation in various fields. The inclusion of thermally conductive nanomaterial as a single or hybrid filling is expected to form 3D network that enhances the thermal performances of phase change materials. The encapsulation of the colloidal composites in a polymer matrix stabilizes the phase change material. EXPERIMENTS: A paraffin matrix was loaded with carbon-based fillers of various dimensionalities, namely, 1D-carbon nanotubes, 2D-graphene nanoplatelets, and 3D-graphite flakes. The thermal conductivity of the colloidal composite was measured by transient plane source and the latent heat capacity by differential scanning calorimetry techniques. Modeling the thermal conductivity by the effective medium approach predicts the experimental results. FINDINGS: The thermal conductivity of the phase change material loaded with fillers is enhanced from 0.2 to 11 W (m K)-1 (×55) compared with a filler-free paraffin matrix. We attribute this enhancement to the synergetic effect of the hybrid fillers (8 vol% graphite flakes and 12 vol% graphene nanoplatelets) and consequent compression (25 bar) of the colloidal composite. Moreover, the obtained phase change material is completely stable during charging and discharging cycles.

5.
ACS Appl Mater Interfaces ; 14(7): 9844-9854, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138787

RESUMEN

Carbon allotropes of different dimensionality, i.e., 1D-carbon nanotubes, 2D-graphene nanoplatelets, and 3D-graphite, possess high thermal conductivity (TC > 2000 W/m K). They are, therefore, excellent candidates for filler material aiming at increasing the TC of composites used for thermal management. However, preparing aqueous dispersions of these materials is challenging due to their strong van der Waals attraction, leading to aggregation and subsequent precipitation. Reported dispersion methodologies have failed to disperse large microscale fillers, which are essential for efficient thermal management. In this work, we suggest to "kinetically arrest" the dispersion by using sepiolite, a fiberlike clay, that effectively disperses all three carbon dimensionalities. We explore the effect of filler dimensionality and properties (lateral size, thickness, defect density) on the dispersion TC enhancement. Modeling the TC by the effective medium approach allows lumping all the intrinsic properties of the filler into a single parameter termed "effective TC", providing an accurate prediction of the experimentally measured TC. We show that, by judicious choice of filler, the TC of both water and a water-ethylene glycol mixture can be enhanced by 31% using graphene nanoplatelets of 15 µm in lateral size. We believe that the guidelines obtained in this work provide a useful tool for designing future liquid composites with enhanced thermal properties.

6.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34835812

RESUMEN

Oil was employed as an 'entrance door' for loading rubber with carbon-based fillers of different size and dimensionalities: 1D carbon nanotubes (CNTs), 2D graphene nanoplatelets (GNPs), and 3D graphite. This approach was explored, as a proof of concept, in the preparation of tire tread, where oil is commonly used to reduce the viscosity of the composite mixture. Rubber was loaded with carbon black (CB, always used) and one or more of the above fillers to enhance the thermal and mechanical properties of the composite. The CNT-loaded system showed the best enhancement in mechanical properties, followed by the CNT-GNP one. Rubber loaded with both graphite and GNP showed the best enhancement in thermal conductivity (58%). The overall enhancements in both mechanical and thermal properties of the various systems were analyzed through an overall relative efficiency index in which the total filler concentration in the system is also included. According to this index, the CNT-loaded system is the most efficient one. The oil as an 'entrance door' is an easy and effective novel approach for loading fillers that are in the nanoscale and provide high enhancement of properties at low filler concentrations.

7.
ACS Appl Mater Interfaces ; 13(5): 6879-6888, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33525866

RESUMEN

Dispersing graphene sheets in liquids, in particular water, could enhance the transport properties (like thermal conductivity) of the dispersion. Yet, such dispersions are difficult to achieve since graphene sheets are prone to aggregate and subsequently precipitate due to their strong van der Waals interactions. Conventional dispersion approaches, such as surface treatment of the sheets either by surfactant adsorption or by chemical modification, may prevent aggregation. Unfortunately, surfactant-assisted graphene dispersions are typically of low concentration (<0.2 wt %) with relatively small sheets (<1 µm lateral size) while chemical modification is punished by increased defect density within the sheets. We investigate here a new approach in which the concentration of dispersed graphene in water is enhanced by the addition of a fibrous clay mineral, sepiolite. As we demonstrate, the clay particles in water form a kinetically arrested particle network within which the graphene sheets are effectively trapped. This mechanism keeps graphene sheets of high lateral size (∼4 µm) dispersed at high concentrations (∼1 wt %). We demonstrate the application of such dispersions as cooling liquids for thermal management solutions, where a 26% enhancement in the thermal conductivity is achieved as compared to that in a filler-free fluid.

8.
Nanoscale ; 12(47): 24177-24187, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33283823

RESUMEN

Existing nanocolloidal optical resonators exhibiting strong magnetic resonances often suffer from multi-step low yield synthesis methods as well as a limited tunability, particularly in terms of spectral superposition of electric and magnetic resonances, which is the cornerstone for achieving Huygens scatterers. To overcome these drawbacks, we have synthesized clusters of gold nanoparticles using an emulsion-based formulation approach. This fabrication technique involved emulsification of an aqueous suspension of gold nanoparticles in an oil phase, followed by controlled ripening of the emulsion. The structural control of the as synthesized clusters, of mean radius 120 nm and produced in large numbers, is demonstrated with microscopy and X-ray scattering techniques. Using a polarization-resolved multi-angle light scattering setup, we conduct a comprehensive angular and spectroscopic determination of their optical resonant scattering in the visible wavelength range. We thus report on the clear experimental evidence of strong optical magnetic resonances and directional forward scattering patterns. The clusters behave as strong Huygens sources. Our findings crucially show that the electric and magnetic resonances as well as the scattering patterns can be tuned by adjusting the inner cluster structure, modifying a simple parameter of the fabrication method. This experimental approach allows for the large scale production of nanoresonators with potential uses for Huygens metasurfaces.

9.
ACS Sens ; 5(10): 3274-3280, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32997492

RESUMEN

An oil-based composite is employed to monitor the exposure to oxygen inside food packaging, aiming at evaluating the package integrity and the freshness of food. The composite is an oxygen-sensitive printable ink consisting of electrically conductive silver microflakes, embedded in a vegetable oil matrix. The sensitivity of the oil to oxygen is driven by its high content of unsaturated fatty acids that polymerize and shrink upon exposure to atmospheric oxygen. Shrinkage increases the silver concentration and induces percolation, manifested by a steep increase in the electrical conductivity of the composite. We found that the electrical conductivity of the composite is related to its exposure time to air. Employing linseed oil as a matrix demonstrates an increase in electrical conductivity from 10-11 to 10-3 S/cm after only 6 days of exposure to air. We also show that this time span could be modified by changing the oil type to fit various expiration periods of food products.


Asunto(s)
Tinta , Aceites de Plantas , Oxígeno , Plata , Verduras
10.
Sensors (Basel) ; 20(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785077

RESUMEN

The determination of food freshness along manufacturer-to-consumer transportation lines is a challenging problem that calls for cheap, simple, reliable, and nontoxic sensors inside food packaging. We present a novel approach for oxygen sensing in which the exposure time to oxygen-rather than the oxygen concentration per se-is monitored. We developed a nontoxic hybrid composite-based sensor consisting of graphite powder (conductive filler), clay (viscosity control filler) and linseed oil (the matrix). Upon exposure to oxygen, the insulating linseed oil is oxidized, leading to polymerization and shrinkage of the matrix and hence to an increase in the concentration of the electrically conductive graphite powder up to percolation, which serves as an indicator of food spoilage. In the developed sensor, the exposure time to oxygen (days to weeks) is obtained by measuring the electrical conductivity though the sensor. The sensor functionality could be tuned by changing the oil viscosity, the aspect ratio of the conductive filler, and/or the concentration of the clay, thereby adapting the sensor to monitoring the quality of food products with different sensitivities to oxygen exposure time (e.g., fish vs grain).

11.
Langmuir ; 35(52): 17103-17113, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31793788

RESUMEN

The yet virtually unexplored class of soft colloidal rods with a small aspect ratio is investigated and shown to exhibit a very rich phase and dynamic behavior, spanning from liquid to nearly melt state. Instead of the nematic order, these short and soft nanocylinders alter their organization with increasing concentration from isotropic liquid with random orientation to small domains with preferred local orientation and eventually a multidomain arrangement with a local orientational order. The latter gives rise to a kinetically suppressed state akin to structural glass with detectable terminal relaxation, which, on further increasing concentration, reveals features of hexagonally packed order as in ordered block copolymers. The respective dynamic response comprises four regimes, all above the overlapping concentration of 0.02 g/mL:(I) from 0.03 to 0.1 g/mol, the system undergoes a liquid-to-solidlike transition with a structural relaxation time that grows by 4 orders of magnitude. (II) From 0.1 to 0.2 g/mL, a dramatic slowing-down is observed and is accompanied by an evolution from isotropic to a multidomain structure. (III) Between 0.2 and 0.6 g/mol, the suspensions exhibit signatures of shell interpenetration and jamming, with the colloidal plateau modulus depending linearly on concentration. (IV) At 0.74 g/mL, in the densely jammed state, the viscoelastic signature of hexagonally packed cylinders from microphase-separated block copolymers is detected. These properties set short and soft nanocylinders apart from long colloidal rods (with a large aspect ratio) and provide insights for fundamentally understanding the physics in this intermediate soft colloidal regime and for tailoring the flow properties of nonspherical soft colloids.

12.
J Colloid Interface Sci ; 547: 69-77, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939346

RESUMEN

Surfactants have been widely employed to debundle, disperse and stabilize carbon nanotubes in aqueous solvents. Yet, a thorough understanding of the dispersing mechanisms at molecular level is still warranted. Herein, we investigated the influence of the molecular structure of gemini surfactants on the dispersibility of multiwalled carbon nanotubes (MWNTs). We used dicationic n-s-n gemini surfactants, varying n and s, the number of alkyl tail and alkyl spacer carbons, respectively; for comparisons, single-tailed surfactant homologues were also studied. Detailed curves of dispersed MWNT concentration vs. surfactant concentration were obtained through a stringently controlled experimental procedure, allowing for molecular insight. The gemini are found to be much more efficient dispersants than their single-tailed homologues, i.e. lower surfactant concentration is needed to attain the maximum dispersed MWNT concentration. In general, the spacer length has a comparatively higher influence on the dispersing efficiency than the tail length. Further, scanning electron microscopy imaging shows a sizeable degree of MWNT debundling by the gemini surfactants in the obtained dispersions. Our observations also point to an adsorption process that does not entail the formation of micelle-like aggregates on the nanotube surface, but rather coverage by individual molecules, among which the ones that seem to be able to adapt best to the nanotube surface provide the highest efficiency. These studies are relevant for the rational design and choice of optimal dispersants for carbon nanomaterials and other similarly water-insoluble materials.

13.
Beilstein J Nanotechnol ; 10: 95-104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30680282

RESUMEN

The substantial heat generation in highly dense electronic devices requires the use of materials tailored to facilitate efficient thermal management. The design of such materials may be based on the loading of thermally conductive fillers into the polymer matrix applied - as a thermal interface material - on the interface between two surfaces to reduce contact resistance. On the one hand, these additives enhance the thermal conductivity of the composite, but on the other hand, they increase the viscosity of the composite and hence impair its workability. This in turn could negatively affect the device-matrix interface. To address this problem, we suggest a tunable composite material comprising a combination of two different carbon-based fillers, graphene nanoplatelets (GNPs) and graphite. By adjusting the GNP:graphite concentration ratio and the total concentration of the fillers, we were able to fine tune the thermal conductivity and the workability of the hybrid polymer composite. To facilitate the optimal design of materials for thermal management, we constructed a 'concentration-thermal conductivity-viscosity phase diagram'. This hybrid approach thus offers solutions for thermal management applications, providing both finely tuned composite thermal properties and workability. We demonstrate the utility of this approach by fabricating a thermal interface material with tunable workability and testing it in a model electronic device.

14.
Langmuir ; 34(45): 13672-13679, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30335395

RESUMEN

When using amphiphilic polymers to exfoliate and disperse carbon nanotubes in water, the balance between the hydrophobic and hydrophilic moieties is critical and nontrivial. Here, we investigate the mode of surface attachment of a triblock copolymer, Pluronics F127, composed of a central hydrophobic polypropylene oxide block flanked by hydrophilic polyethylene oxide blocks, onto single-walled carbon nanotubes (SWNTs). Crucially, we analyze the composition in dispersant of both the as-obtained dispersion (the supernatant) and the precipitate-containing undispersed materials. For this, we combine the carefully obtained data from 1H NMR peak intensities and self-diffusion and thermogravimetric analysis. The molecular motions behind the observed NMR features are clarified. We find that the hydrophobic blocks attach to the dispersed SWNT surface and remain significantly immobilized leading to 1H NMR signal loss. On the other hand, the hydrophilic blocks remain highly mobile and thus readily detectable by NMR. The dispersant is shown to possess significant block polydispersity that has a large effect on dispersibility. Polymers with large hydrophobic blocks adsorb on the surface of the carbonaceous particles that precipitate, indicating that although a larger hydrophobic block is good for enhancing adsorption, it may be less effective in dispersing the tubes. A model is also proposed that consistently explains our observations in SWNT dispersions and some contradicting findings obtained previously in carbon nanohorn dispersions. Overall, our findings help elucidating the molecular picture of the dispersion process for SWNTs and are of interest when looking for more effective (i.e., well-balanced) polymeric dispersants.

15.
ACS Omega ; 3(3): 2508-2517, 2018 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023837

RESUMEN

The uniqueness of Doxil can be attributed, to a large extent, to its intraliposomal doxorubicin-sulfate nanorod crystal. We re-examine these nanocrystal features and their mechanism of the formation by studying pegylated liposomal doxorubicins (PLDs) of the same lipid composition, size distribution, and extraliposome medium that were prepared at different ammonium sulfate (AS) concentrations. This study includes a comparison of the thermotropic behavior, morphology, and in vitro ammonia-induced doxorubicin release (relevant to Doxil's in vivo performance) of these PLDs. In this study, we confirm that a transmembrane ammonium gradient is critical for doxorubicin remote loading, and we demonstrate that the intraliposomal concentration of sulfate counteranions and ammonium ions determine to a large extent the physical state and stability of the PLDs' remote loaded doxorubicin. "Fully-developed" intraliposome doxorubicin-sulfate nanorod crystals (as defined by cryogenic transmission electron microscopy imaging) develop only when the ammonium sulfate (AS) concentration used for PLD preparation is ≥150 mM. Less than 10% of PLDs prepared with 100 mM AS show fully developed nanorod crystals. Intraliposomal AS concentration ≥200 mM is required to support the stable nanocrystallization in PLDs. The presence of nanocrystals and their melting enthalpy and phase transition co-operativity strongly affect the ammonia-induced doxorubicin release of PLDs. A quick, biphasic release occurs for PLDs that lack the nanorod crystals or have crystals of poor crystallinity, whereas PLDs prepared with ≥200 mM AS show a monophasic, zero-order slow release. This study also demonstrates that after remote loading, residual intraliposomal ammonium concentration and the transmembrane pH gradient related to it also play an important role in doxorubicin-sulfate intraliposomal crystallization and ammonia-induced doxorubicin release.

16.
Int J Pharm ; 547(1-2): 648-655, 2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-29913218

RESUMEN

Size and morphology distributions are critical to the performance of nano-drug systems, as they determine drug pharmacokinetics and biodistribution. Therefore, comprehensive and reliable analyses of these properties are required by both the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). In this study, we compare two most commonly used approaches for assessing the size distribution and morphology of liposomal nano-drug systems, namely, dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM); an automated quantitative analysis method was developed for the latter method. We demonstrate the advantages and disadvantages of each of these two approaches for a commercial formulation of the anti-cancer drug doxorubicin - Doxil®, in which the drug is encapsulated, mostly in the form of nano-rod crystals. With increasing drug concentration, these nano-rods change the shape of the liposomes from spherical, before drug loading, to prolate (oval), post drug loading. Cryo-TEM analysis provides a detailed size distribution of both the liposomes (minor and major axes) and the nano-rod drug. Both these values are relevant to the drug performance. In this study, we show that at elevated drug concentration (2.75 mg/ml) the drug grows mainly along the major axis and that this high concentration can result, in some cases, in liposome rupture. We show that the combination of cryo-TEM and DLS constitutes a reliable tool for demonstrating the stability of the formulation in human plasma at body temperature, a characteristic that is crucial for achieving therapeutic efficacy.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/análogos & derivados , Composición de Medicamentos/métodos , Nanopartículas/química , Tamaño de la Partícula , Antineoplásicos/química , Antineoplásicos/farmacocinética , Química Farmacéutica/métodos , Microscopía por Crioelectrón , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacocinética , Estabilidad de Medicamentos , Dispersión Dinámica de Luz , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Liposomas , Microscopía Electrónica de Transmisión , Plasma , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Reproducibilidad de los Resultados , Programas Informáticos , Temperatura , Distribución Tisular
17.
Nanotechnology ; 28(30): 305701, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28609298

RESUMEN

A major challenge in nanocomposite research is to predict the optimal nanomaterial concentration (ONC) yielding a maximal reinforcement in a given property. We present a simple approach to identify the ONC based on our finding that it is typically located in close proximity to an abrupt increase in polymer matrix viscosity, termed the rheological percolation threshold, and thus may be used as an indicator of the ONC. This premise was validated by rheological and fractography studies of composites loaded by nanomaterials including graphene nanoribbons or carbon or tungsten disulfide nanotubes. The correlation between in situ viscosity, the rheological percolation threshold concentration and the nanocomposite fractography demonstrates the utility of the method.

18.
ACS Appl Mater Interfaces ; 9(8): 7556-7564, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145122

RESUMEN

Thermal conductivity (TC) enhancement of an insulating polymer matrix at low filler concentration is possible through the loading of a high aspect ratio, thermally conductive single filler. Unfortunately, the dispersion of high-aspect-ratio particles greatly influences the rheological behavior of the polymer host at relatively low volume fractions, which makes further polymer processing or mixing difficult. A possible remedy is using two (hybrid) fillers, differing in their aspect ratios: (1) a plate-like filler, which sharply increases both viscosity and TC, and (2) an isotropic filler, which gradually increases these properties. We examine this hypothesis in a thermosetting silicone rubber by loading it with different ratios, (1)/(2), of graphene nanoplatelets (GNPs) (1) and graphite powder (2). We constructed a "phase diagram" delineating two composite processability regions: solid-like (moldable) or fluid-like (pourable). This diagram may be employed to tailor the mixture's viscosity to a desired TC value by varying the fillers' volume fraction. The phase diagram highlights the low volume fraction value, above which the composite is solid-like (low processability) for a single high-aspect-ratio nanofiller. By using hybrid filling, one can overcome this limit and prepare a fluid-like composite at a desired TC, not accessible by the single nanofiller. Thus, it provides an indicative tool for polymer processing, especially in applications such as the encapsulation of electronic devices. This approach was demonstrated for a heat source (resistor) potted by silicon rubber graphene-graphite composites, for which a desired TC was obtained in both solid- and liquid-like regions.

19.
Nat Commun ; 8: 14018, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28084315

RESUMEN

Extensive work has been invested in the design of bio-inspired peptide emulsifiers. Yet, none of the formulated surfactants were based on the utilization of the robust conformation and self-assembly tendencies presented by the hydrophobins, which exhibited highest surface activity among all known proteins. Here we show that a minimalist design scheme could be employed to fabricate rigid helical peptides to mimic the rigid conformation and the helical amphipathic organization. These designer building blocks, containing natural non-coded α-aminoisobutyric acid (Aib), form superhelical assemblies as confirmed by crystallography and microscopy. The peptide sequence is amenable to structural modularity and provides the highest stable emulsions reported so far for peptide and protein emulsifiers. Moreover, we establish the ability of short peptides to perform the dual functions of emulsifiers and thickeners, a feature that typically requires synergistic effects of surfactants and polysaccharides. This work provides a different paradigm for the molecular engineering of bioemulsifiers.


Asunto(s)
Péptidos/química , Tensoactivos/química , Secuencia de Aminoácidos , Ácidos Aminoisobutíricos/química , Cristalografía , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas/química
20.
J Colloid Interface Sci ; 493: 398-404, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28131086

RESUMEN

Mechanical agitation is commonly used to fragment and disperse insoluble materials in liquids. However, here we show that when pristine single-walled carbon nanotubes pre-dispersed in water are subject to vortex-shaking for very short periods (typically 10-60s, power density ∼0.002WmL-1), re-aggregation counterintuitively occurs. The initial dispersions are produced using surfactants as dispersants and powerful tip sonication (∼1WmL-1) followed by centrifugation. Detailed imaging by light and electron microscopies shows that the vortex-induced aggregates consist of loose networks (1-102µm in size) of intertwined tubes and thin bundles. The average aggregate size increases with vortexing time in an apparently logarithmic manner and depends on the dispersant used, initial concentration of nanotubes and size distribution of bundles. The aggregation is, nonetheless, reversible: if the vortex-shaken dispersions are mildly bath-sonicated (∼0.03WmL-1), the flocs break down and re-dispersal occurs. Molecular insight for the mechanism behind this surprising phenomenon is put forth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...