Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 175: 116677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701570

RESUMEN

The current pharmacological approaches to multiple sclerosis (MS) target its inflammatory and autoimmune components, but effective treatments to foster remyelination and axonal repair are still lacking. We therefore selected two targets known to be involved in MS pathogenesis: N-acylethanolamine-hydrolyzing acid amidase (NAAA) and glycogen synthase kinase-3ß (GSK-3ß). We tested whether inhibiting these targets exerted a therapeutic effect against experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The combined inhibition of NAAA and GSK-3ß by two selected small-molecule compounds, ARN16186 (an NAAA inhibitor) and AF3581 (a GSK-3ß inhibitor), effectively mitigated disease progression, rescuing the animals from paralysis and preventing a worsening of the pathology. The complementary activity of the two inhibitors reduced the infiltration of immune cells into the spinal cord and led to the formation of thin myelin sheaths around the axons post-demyelination. Specifically, the inhibition of NAAA and GSK-3ß modulated the over-activation of NF-kB and STAT3 transcription factors in the EAE-affected mice and induced the nuclear translocation of ß-catenin, reducing the inflammatory insult and promoting the remyelination process. Overall, this work demonstrates that the dual-targeting of key aspects responsible for MS progression could be an innovative pharmacological approach to tackle the pathology.


Asunto(s)
Amidohidrolasas , Encefalomielitis Autoinmune Experimental , Glucógeno Sintasa Quinasa 3 beta , Ratones Endogámicos C57BL , Esclerosis Múltiple , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Ratones , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Femenino , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , FN-kappa B/metabolismo , Inhibidores Enzimáticos/farmacología , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos
2.
J Pers Med ; 12(8)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36013289

RESUMEN

The polygenic and multifactorial nature of many psychiatric disorders has hampered implementation of the personalized medicine approach in clinical practice. However, induced pluripotent stem cell (iPSC) technology has emerged as an innovative tool for patient-specific disease modeling to expand the pathophysiology knowledge and treatment perspectives in the last decade. Current technologies enable adult human somatic cell reprogramming into iPSCs to generate neural cells and direct neural cell conversion to model organisms that exhibit phenotypes close to human diseases, thereby effectively representing relevant aspects of neuropsychiatric disorders. In this regard, iPSCs reflect patient pathophysiology and pharmacological responsiveness, particularly when cultured under conditions that emulate spatial tissue organization in brain organoids. Recently, the application of iPSCs has been frequently associated with gene editing that targets the disease-causing gene to deepen the illness pathophysiology and to conduct drug screening. Moreover, gene editing has provided a unique opportunity to repair the putative causative genetic lesions in patient-derived cells. Here, we review the use of iPSC technology to model and potentially treat neuropsychiatric disorders by illustrating the key studies on a series of mental disorders, including schizophrenia, major depressive disorder, bipolar disorder, and autism spectrum disorder. Future perspectives will involve the development of organ-on-a-chip platforms that control the microenvironmental conditions so as to reflect individual pathophysiological by adjusting physiochemical parameters according to personal health data. This strategy could open new ways by which to build a disease model that considers individual variability and tailors personalized treatments.

3.
J Headache Pain ; 23(1): 79, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799128

RESUMEN

Targeting fatty acid amide hydrolase (FAAH) is a promising therapeutic strategy to combat certain forms of pain, including migraine headache. FAAH inhibitors, such as the O-biphenyl-3-yl carbamate URB597, have been shown to produce anti-hyperalgesic effects in animal models of migraine. The objective of this study was to investigate the behavioral and biochemical effects of compounds ARN14633 and ARN14280, two URB597 analogs with improved solubility and bioavailability, in a migraine-specific rat model in which trigeminal hyperalgesia is induced by nitroglycerin (NTG) administration. ARN14633 (1 mg/kg, i.p.) and ARN14280 (3 mg/kg, i.p.) were administered to adult male Sprague-Dawley rats 3 hours after NTG injection. One hour after the administration of either compound, rats were subjected to the orofacial formalin test. ARN14633 and ARN14280 attenuated NTG-induced nocifensive behavior and reduced transcription of genes encoding neuronal nitric oxide synthase, pain mediators peptides (calcitonin gene-related peptide, substance P) and pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and 6) in the trigeminal ganglion, cervical spinal cord and medulla. Finally, both compounds strongly elevated levels of endocannabinoids and/or other FAAH substrates in cervical spinal cord and medulla, and, to a lesser extent, in the trigeminal ganglia. The results indicate that the novel global FAAH inhibitors ARN14633 and ARN14280 elicit significant anti-hyperalgesic effects in a migraine-specific animal model and inhibit the associated peptidergic-inflammatory response. Although the precise mechanism underlying these effects remains to be elucidated, our results support further investigational studies of FAAH blockade as a potential therapeutic strategy to treat migraine conditions.


Asunto(s)
Endocannabinoides , Trastornos Migrañosos , Amidas/efectos adversos , Amidohidrolasas/genética , Amidohidrolasas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Masculino , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Nitroglicerina/farmacología , Dolor , Ratas , Ratas Sprague-Dawley
4.
Hum Mol Genet ; 31(6): 839-849, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34596681

RESUMEN

Glycogen-synthase kinase 3 (GSK3) is a kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK3 has been linked to several disease conditions such as fragile X syndrome (FXS). Recent evidences demonstrating an increased activity of GSK3 in murine models of FXS, suggest that dysregulation/hyperactivation of the GSK3 path should contribute to FXS development. A likely possibility could be that in FXS there is a functional impairment of the upstream inhibitory input over GSK3 thus making overactive the kinase. Since GSK3 signaling is a central regulatory node for critical neurodevelopmental pathways, understanding the contribution of GSK3 dysregulation to FXS, may provide novel targets for therapeutic interventions for this disease. In this study we used AF3581, a potent GSK3 inhibitor that we recently discovered, in an in vivo FXS mouse model to elucidate the crucial role of GSK3 in specific behavioral patterns (locomotor activity, sensorimotor gating and social behavior) associated with this disease. All the behavioral alterations manifested by Fmr1 knockout mice were reverted after a chronic treatment with our GSK3 inhibitor, confirming the importance of this pathway as a therapeutic target.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Ratones , Ratones Noqueados , Fenotipo
5.
Pharmacol Res ; 175: 105982, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798263

RESUMEN

All the different coronavirus SARS-CoV-2 variants isolated so far share the same mechanism of infection mediated by the interaction of their spike (S) glycoprotein with specific residues on their cellular receptor: the angiotensin converting enzyme 2 (ACE2). Therefore, the steric hindrance on this cellular receptor created by a bulk macromolecule may represent an effective strategy for the prevention of the viral spreading and the onset of severe forms of Corona Virus disease 19 (COVID-19). Here, we applied a systematic evolution of ligands by exponential enrichment (SELEX) procedure to identify two single strand DNA molecules (aptamers) binding specifically to the region surrounding the K353, the key residue in human ACE2 interacting with the N501 amino acid of the SARS-CoV-2 S. 3D docking in silico experiments and biochemical assays demonstrated that these aptamers bind to this region, efficiently prevent the SARS-CoV-2 S/human ACE2 interaction and the viral infection in the nanomolar range, regardless of the viral variant, thus suggesting the possible clinical development of these aptamers as SARS-CoV-2 infection inhibitors. Our approach brings a significant innovation to the therapeutic paradigm of the SARS-CoV-2 pandemic by protecting the target cell instead of focusing on the virus; this is particularly attractive in light of the increasing number of viral mutants that may potentially escape the currently developed immune-mediated neutralization strategies.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Aptámeros de Nucleótidos/farmacología , Tratamiento Farmacológico de COVID-19 , Receptores Virales/antagonistas & inhibidores , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , COVID-19/enzimología , COVID-19/genética , COVID-19/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Mutación , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/genética , Técnica SELEX de Producción de Aptámeros
7.
Molecules ; 26(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833857

RESUMEN

NAI-112, a glycosylated, labionine-containing lanthipeptide with weak antibacterial activity, has demonstrated analgesic activity in relevant mouse models of nociceptive and neuropathic pain. However, the mechanism(s) through which NAI-112 exerts its analgesic and antibacterial activities is not known. In this study, we analyzed changes in the spinal cord lipidome resulting from treatment with NAI-112 of naive and in-pain mice. Notably, NAI-112 led to an increase in phosphatidic acid levels in both no-pain and pain models and to a decrease in lysophosphatidic acid levels in the pain model only. We also showed that NAI-112 can form complexes with dipalmitoyl-phosphatidic acid and that Staphylococcus aureus can become resistant to NAI-112 through serial passages at sub-inhibitory concentrations of the compound. The resulting resistant mutants were phenotypically and genotypically related to vancomycin-insensitive S. aureus strains, suggesting that NAI-112 binds to the peptidoglycan intermediate lipid II. Altogether, our results suggest that NAI-112 binds to phosphate-containing lipids and blocks pain sensation by decreasing levels of lysophosphatidic acid in the TRPV1 pathway.


Asunto(s)
Analgésicos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Péptidos/farmacología , Staphylococcus aureus/metabolismo , Animales , Masculino , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo
8.
J Med Chem ; 64(18): 13327-13355, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34469137

RESUMEN

Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure-activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo[3.2.1]octane-pyrazole sulfonamide 50 (ARN19689), which was found to inhibit human NAAA in the low nanomolar range (IC50 = 0.042 µM) with a non-covalent mechanism of action. In light of its favorable biochemical, in vitro and in vivo drug-like profile, sulfonamide 50 could be regarded as a promising pharmacological tool to be further investigated in the field of inflammatory conditions.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antiinflamatorios/farmacología , Inhibidores Enzimáticos/farmacología , Pirazoles/farmacología , Tropanos/farmacología , Amidohidrolasas/metabolismo , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Humanos , Masculino , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Pirazoles/síntesis química , Pirazoles/metabolismo , Pirazoles/farmacocinética , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tropanos/síntesis química , Tropanos/metabolismo , Tropanos/farmacocinética
9.
Pharmacol Res ; 172: 105816, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34391933

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), in which myeloid cells sustain inflammation, take part in priming, differentiation, and reactivation of myelin-specific T cells, and cause direct myelin damage. N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a proinflammatory enzyme induced by phlogosis and overexpressed in macrophages and microglia of EAE mice. Targeting these cell populations by inhibiting NAAA may be a promising pharmacological strategy to modulate the inflammatory aspect of MS and manage disease progression. To address this goal, we used ARN16186, a small molecule specifically designed and synthesized as a pharmacological tool to inhibit NAAA. We assessed whether enzyme inhibition affected the severity of neurological symptoms and modulated immune cell infiltration into the central nervous system of EAE mice. We found that preventive chronic treatment with ARN16186 was efficacious in slowing disease progression and preserving locomotor activity in EAE mice. Furthermore, NAAA inhibition reduced the number of immune cells infiltrating the spinal cord and modulated the overactivation of NF-kB and STAT3 transcription factors, leading to less expansion of Th17 cells over the course of the disease.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Locomoción/efectos de los fármacos , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/metabolismo , Linfocitos T/inmunología
10.
Cell Death Dis ; 12(5): 498, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33993189

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder, characterized by intellectual disability and sensory deficits, caused by epigenetic silencing of the FMR1 gene and subsequent loss of its protein product, fragile X mental retardation protein (FMRP). Delays in synaptic and neuronal development in the cortex have been reported in FXS mouse models; however, the main goal of translating lab research into pharmacological treatments in clinical trials has been so far largely unsuccessful, leaving FXS a still incurable disease. Here, we generated 2D and 3D in vitro human FXS model systems based on isogenic FMR1 knock-out mutant and wild-type human induced pluripotent stem cell (hiPSC) lines. Phenotypical and functional characterization of cortical neurons derived from FMRP-deficient hiPSCs display altered gene expression and impaired differentiation when compared with the healthy counterpart. FXS cortical cultures show an increased number of GFAP positive cells, likely astrocytes, increased spontaneous network activity, and depolarizing GABAergic transmission. Cortical brain organoid models show an increased number of glial cells, and bigger organoid size. Our findings demonstrate that FMRP is required to correctly support neuronal and glial cell proliferation, and to set the correct excitation/inhibition ratio in human brain development.


Asunto(s)
Encéfalo/diagnóstico por imagen , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Diferenciación Celular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
11.
Pain ; 162(9): 2376-2385, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33587406

RESUMEN

ABSTRACT: Migraine pathophysiology has been suggested to include dysregulation of the endocannabinoid system (ES). We simultaneously evaluated plasma anandamide (AEA) and palmitoylethanolamide (PEA) levels and spinal sensitization in a validated human model of migraine based on systemic nitroglycerin (NTG) administration. Twenty-four subjects with episodic migraine (MIG) and 19 healthy controls (HC) underwent blood sampling and investigation of nociceptive withdrawal reflex thresholds (RTh: single-stimulus threshold; TST: temporal summation threshold) before and 30 (T30), 60 (T60), and 120 (T120) minutes after sublingual NTG administration (0.9 mg). At baseline, the MIG and HC groups were comparable for plasma AEA (P = 0.822) and PEA (P = 0.182) levels, and for RTh (P = 0.142) and TST values (P = 0.150). Anandamide levels increased after NTG administration (P = 0.022) in both groups, without differences between them (P = 0.779). By contrast, after NTG administration, PEA levels increased in the MIG group at T120 (P = 0.004), while remaining stable in the HC group. Nitroglycerin administration induced central sensitization in the MIG group, which was recorded as reductions in RTh (P = 0.046) at T30 and T120, and in TST (P = 0.001) at all time points. In the HC group, we observed increases in RTh (P = 0.001) and TST (P = 0.008), which suggest the occurrence of habituation. We found no significant correlations between the ES and neurophysiological parameters. Our findings suggest a role for PEA in the ictal phase of episodic migraine. The ES does not seem to be directly involved in the modulation of NTG-induced central sensitization, which suggests that the observed PEA increase and spinal sensitization are parallel, probably unrelated, phenomena.


Asunto(s)
Trastornos Migrañosos , Nocicepción , Amidas , Etanolaminas , Humanos , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Nitroglicerina , Ácidos Palmíticos
12.
Neurobiol Dis ; 147: 105157, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129939

RESUMEN

Inhibiting the activity of fatty-acid amide hydrolase (FAAH), the enzyme that deactivates the endocannabinoid anandamide, enhances anandamide-mediated signaling and holds promise as a molecular target for the treatment of human pathologies such as anxiety and pain. We have previously shown that the peripherally restricted FAAH inhibitor, URB937, prevents nitroglycerin-induced hyperalgesia - an animal model of migraine - and attenuates the activation of brain areas that are relevant for migraine pain, e.g. trigeminal nucleus caudalis and locus coeruleus. The current study is aimed at profiling the behavioral and biochemical effects of URB937 in animal models of acute and chronic migraine. We evaluated the effects of URB937 in two rat models that capture aspects of acute and chronic migraine, and are based on single or repeated administration of the vasodilating drug, nitroglycerin (NTG). In addition to nocifensive behavior, in trigeminal ganglia and medulla, we measured mRNA levels of neuropeptides and pro-inflammatory cytokines along with tissue levels of anandamide and palmitoylethanolamide (PEA), an endogenous agonist of peroxisome proliferator-activated receptor type-a (PPAR-a), which is also a FAAH substrate. In the acute migraine model, we also investigated the effect of subtype-selective antagonist for cannabinoid receptors 1 and 2 (AM251 and AM630, respectively) on nocifensive behavior and on levels of neuropeptides and pro-inflammatory cytokines. In the acute migraine paradigm, URB937 significantly reduced hyperalgesia in the orofacial formalin test when administered either before or after NTG. This effect was accompanied by an increase in anandamide and PEA levels in target neural tissue, depended upon CB1 receptor activation, and was associated with a decrease in calcitonin gene-related peptide (CGRP), substance P and cytokines TNF-alpha and IL-6 mRNA. Similar effects were observed in the chronic migraine paradigm, where URB937 counteracted NTG-induced trigeminal hyperalgesia and prevented the increase in neuropeptide and cytokine transcription. The results show that peripheral FAAH inhibition by URB937 effectively reduces both acute and chronic NTG-induced trigeminal hyperalgesia, likely via augmented anandamide-mediated CB1 receptor activation. These effects are associated with inhibition of neuropeptidergic and inflammatory pathways.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Cannabinoides/farmacología , Trastornos Migrañosos , Animales , Conducta Animal/efectos de los fármacos , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Masculino , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Neuropéptidos/efectos de los fármacos , Neuropéptidos/metabolismo , Ratas , Ratas Sprague-Dawley , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
13.
ACS Med Chem Lett ; 11(5): 825-831, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435391

RESUMEN

Bipolar disorders still represent a global unmet medical need and pose a requirement for novel effective treatments. In this respect, glycogen synthase kinase 3ß (GSK-3ß) aberrant activity has been linked to the pathophysiology of several disease conditions, including mood disorders. Therefore, the development of GSK-3ß inhibitors with good in vivo efficacy and safety profile associated with high brain exposure is required. Accordingly, we have previously reported the selective indazole-based GSK-3 inhibitor 1, which showed excellent efficacy in a mouse model of mania. Despite the favorable preclinical profile, analog 1 suffered from activity at the hERG ion channel, which prevented its further progression. Herein, we describe our strategy to improve this off-target liability through modulation of physicochemical properties, such as lipophilicity and basicity. These efforts led to the potent inhibitor 14, which possessed reduced hERG affinity, promising in vitro ADME properties, and was very effective in a mood stabilizer in vivo model.

14.
Biomed Pharmacother ; 128: 110249, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32470749

RESUMEN

Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzymeand highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3ß has been linked to several disease conditions. There is now large evidence on the role of GSK-3ß in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3ß in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3ß inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3ß in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3ß activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 ß inhibitors in the management of bipolar disorders patients.


Asunto(s)
Afecto/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Agresión/efectos de los fármacos , Anhedonia/efectos de los fármacos , Animales , Trastorno Bipolar/enzimología , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/psicología , Encéfalo/enzimología , Encéfalo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/enzimología , Depresión/fisiopatología , Depresión/psicología , Modelos Animales de Enfermedad , Preferencias Alimentarias/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hidrocortisona/sangre , Locomoción/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Autoimagen
15.
Neurobiol Dis ; 134: 104624, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31629892

RESUMEN

BACKGROUND: Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration. AIM: To further investigate the relevance of FAAH inhibition in the NTG animal model of migraine by testing the effects of the globally active FAAH inhibitor URB597. METHODS: Our experimental approach involved mapping neuronal c-Fos protein expression, measurement of AEA levels in brain areas and in trigeminal ganglia, evaluation of pain-related behavior and quantification of molecular mediators in rats that received URB597 (2 mg/kg i.p.) either before or after NTG administration (10 mg/kg, i.p.). RESULTS: Pre-treatment with URB597 significantly reduced c-Fos immunoreactivity in the TNC and inhibited NTG-induced hyperalgesia in the orofacial formalin test. This behavioral response was associated with a decrease in neuronal nitric oxide synthase, calcitonin gene-related peptide and cytokine gene expression levels in central and peripheral structures. Administration of URB597 after NTG had no such effect. CONCLUSIONS: The findings suggest that global FAAH inhibition may offer a therapeutic approach to the prevention, but not the abortive treatment, of migraine attacks. Further studies are needed to elucidate the exact cellular and molecular mechanisms underlying the protective effects of FAAH inhibition.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzamidas/farmacología , Carbamatos/farmacología , Trastornos Migrañosos/prevención & control , Núcleo Caudal del Trigémino/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Masculino , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/enzimología , Nitroglicerina/toxicidad , Ratas , Ratas Sprague-Dawley , Vasodilatadores/toxicidad
16.
Metabolomics ; 15(5): 74, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31053995

RESUMEN

INTRODUCTION: Current markers of Parkinson's disease (PD) fail to detect the early progression of disease state. Conversely, current omics techniques allow the investigation of hundreds of molecules potentially altered by disease conditions. Based on evidence previously collected by our group in a mouse model of PD, we speculated that a particular set of circulating lipids might be significantly altered by the pathology. OBJECTIVES: The aim of current study was to evaluate the potential of a particular set of N-acyl-phosphatidylethanolamines (NAPEs) as potential non-invasive plasma markers of ongoing neurodegeneration from Parkinson's disease in human subjects. METHODS: A panel of seven NAPEs were quantified by LC-MS/MS in the plasma of 587 individuals (healthy controls, n = 319; Parkinson's disease, n = 268); Random Forest classification and statistical modeling was applied to compare Parkinson's disease versus controls. All p-values obtained in different tests were corrected for multiplicity by controlling the false discovery rate (FDR). RESULTS: The results indicate that this panel of NAPEs is able to distinguish female PD patients from the corresponding healthy controls. Further to this, the observed downregulation of these NAPEs is in line with the results in plasma of a mouse model of Parkinson's (6-OHDA). CONCLUSIONS: In the current study we have shown the downregulation of NAPEs in plasma of PD patients and we thus speculate that these lipids might serve as candidate biomarkers for PD. We also suggest a molecular mechanism, explaining our findings, which involves gut microbiota.


Asunto(s)
Metabolómica , Enfermedad de Parkinson/sangre , Fosfatidiletanolaminas/sangre , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Factores Sexuales , Adulto Joven
17.
Sci Rep ; 6: 33172, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27609215

RESUMEN

Alzheimer's disease (AD) is a chronic pathological condition that leads to neurodegeneration, loss of intellectual abilities, including cognition and memory, and ultimately to death. It is widely recognized that AD is a multifactorial disease, where different pathological cascades (mainly amyloid and tau) contribute to neural death and to the clinical outcome related to the disease. The currently available drugs for AD were developed according to the one-target, one-drug paradigm. In recent times, multi-target strategies have begun to play an increasingly central role in the discovery of more efficacious candidates for complex neurological conditions, including AD. In this study, we report on the in vivo pharmacological characterization of ARN14140, a new chemical entity, which was obtained through a multi-target structure-activity relationship campaign, and which showed a balanced inhibiting profile against the acetylcholinesterase enzyme and the NMDA receptor. Based on the initial promising biochemical data, ARN14140 is here studied in mice treated with the amyloidogenic fragment 25-35 of the amyloid-ß peptide, a consolidated non-transgenic AD model. Sub-chronically treating animals with ARN14140 leads to a prevention of the cognitive impairment and of biomarker levels connected to neurodegeneration, demonstrating its neuroprotective potential as new AD agent.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Galantamina/farmacología , Memantina/farmacología , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Ratones , Ratones Transgénicos
18.
Eur J Med Chem ; 111: 138-59, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26866968

RESUMEN

4-Cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate (3b) is a potent, selective and systemically active inhibitor of intracellular NAAA activity, which produces profound anti-inflammatory effects in animal models. In the present work, we describe structure-activity relationship (SAR) studies on 3-aminoazetidin-2-one derivatives, which have led to the identification of 3b, and expand these studies to elucidate the principal structural and stereochemical features needed to achieve effective NAAA inhibition. Investigations on the influence of the substitution at the ß-position of the 2-oxo-3-azetidinyl ring as well as on the effect of size and shape of the carbamic acid ester side chain led to the discovery of 3ak, a novel inhibitor of human NAAA that shows an improved physicochemical and drug-like profile relative to 3b. This favourable profile, along with the structural diversity of the carbamic acid chain of 3b, identify this compound as a promising new tool to investigate the potential of NAAA inhibitors as therapeutic agents for the treatment of pain and inflammation.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Carbamatos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ésteres/síntesis química , Ésteres/farmacología , beta-Lactamas/farmacología , Amidohidrolasas/metabolismo , Carbamatos/síntesis química , Carbamatos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Ésteres/química , Humanos , Estructura Molecular , Relación Estructura-Actividad , beta-Lactamas/síntesis química , beta-Lactamas/química
19.
J Med Chem ; 58(22): 8920-37, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26486317

RESUMEN

Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3ß (GSK-3ß) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3ß inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3ß. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3ß inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3ß inhibitors as new tools in the development of new treatments for mood disorders.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Trastornos del Humor/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Anfetamina/farmacología , Animales , Unión Competitiva/efectos de los fármacos , Células CHO , Estimulantes del Sistema Nervioso Central/farmacología , Cricetinae , Cricetulus , Inhibidores Enzimáticos/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Actividad Motora/efectos de los fármacos , Fosforilación , Relación Estructura-Actividad , Difracción de Rayos X , Proteínas tau/metabolismo
20.
ACS Chem Biol ; 10(8): 1838-46, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25874594

RESUMEN

Fatty acid ethanolamides such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are lipid-derived mediators that potently inhibit pain and inflammation by ligating type-α peroxisome proliferator-activated receptors (PPAR-α). These bioactive substances are preferentially degraded by the cysteine hydrolase, N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages. Here, we describe a new class of ß-lactam derivatives that are potent, selective, and systemically active inhibitors of intracellular NAAA activity. The prototype of this class deactivates NAAA by covalently binding the enzyme's catalytic cysteine and exerts profound anti-inflammatory effects in both mouse models and human macrophages. This agent may be used to probe the functions of NAAA in health and disease and as a starting point to discover better anti-inflammatory drugs.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antiinflamatorios/química , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , beta-Lactamas/química , beta-Lactamas/farmacología , Amidohidrolasas/inmunología , Animales , Antiinflamatorios/uso terapéutico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inflamación/enzimología , Inflamación/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , beta-Lactamas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...