Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; : e16330, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38725388

RESUMEN

PREMISE: Increasingly complete phylogenies underpin studies in systematics, ecology, and evolution. Myrteae (Myrtaceae), with ~2700 species, is a key component of the exceptionally diverse Neotropical flora, but given its complicated taxonomy, automated assembling of molecular supermatrices from public databases often lead to unreliable topologies due to poor species identification. METHODS: Here, we build a taxonomically verified molecular supermatrix of Neotropical Myrteae by assembling 3909 published and 1004 unpublished sequences from two nuclear and seven plastid molecular markers. We infer a time-calibrated phylogenetic tree that covers 712 species of Myrteae (~28% of the total diversity in the clade) and evaluate geographic and taxonomic gaps in sampling. RESULTS: The tree inferred from the fully concatenated matrix mostly reflects the topology of the plastid data set and there is a moderate to strong incongruence between trees inferred from nuclear and plastid partitions. Large, species-rich genera are still the poorest sampled within the group. Eastern South America is the best-represented area in proportion to its species diversity, while Western Amazon, Mesoamerica, and the Caribbean are the least represented. CONCLUSIONS: We provide a time-calibrated tree that can be more reliably used to address finer-scale eco-evolutionary questions that involve this group in the Neotropics. Gaps to be filled by future studies include improving representation of taxa and areas that remain poorly sampled, investigating causes of conflict between nuclear and plastid partitions, and the role of hybridization and incomplete lineage sorting in relationships that are poorly supported.

2.
Ecology ; : e4308, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629131

RESUMEN

The recent availability of open-access repositories of functional traits has revolutionized trait-based approaches in ecology and evolution. Nevertheless, the underrepresentation of tropical regions and lineages remains a pervasive bias in plant functional trait databases, which constrains large-scale assessments of plant ecology, evolution, and biogeography. Here, we present MelastomaTRAITs 1.0, a comprehensive and updatable database of functional traits for the pantropical Melastomataceae, the ninth-largest angiosperm family with 177 genera and more than 5800 species. Melastomataceae encompass species with a wide diversity of growth forms (herbs, shrubs, trees, epiphytes, and woody climbers), habitats (including tropical forests, savannas, grasslands, and wetlands from sea level to montane areas above the treeline), ecological strategies (from pioneer, edge-adapted and invasive species to shade-tolerant understory species), geographic distribution (from microendemic to continental-wide distribution), reproductive, pollination, and seed dispersal systems. MelastomaTRAITs builds on 581 references, such as taxonomic monographs, ecological research, and unpublished data, and includes four whole-plant traits, six leaf traits, 11 flower traits, 18 fruit traits, and 27 seed traits for 2520 species distributed in 144 genera across all 21 tribes. Most data come from the Neotropics where the family is most species-rich. Miconieae (the largest tribe) contains the highest number of trait records (49.6%) and species (41.1%) records. The trait types with the most information in the database were whole-plant traits, flowers, and leaf traits. With the breadth of functional traits recorded, our database helps to fill a gap in information for tropical plants and will significantly improve our capacity for large-scale trait-based syntheses across levels of organization, plant-animal interactions, regeneration ecology, and thereby support conservation and restoration programs. There are no copyright restrictions on the dataset; please cite this data paper when reusing the data.

3.
Am J Bot ; 110(9): e16220, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37551426

RESUMEN

PREMISE: Floral evolution in large clades is difficult to study not only because of the number of species involved, but also because they often are geographically widespread and include a diversity of outcrossing pollination systems. The cosmopolitan blueberry family (Ericaceae) is one such example, most notably pollinated by bees and multiple clades of nectarivorous birds. METHODS: We combined data on floral traits, pollination ecology, and geography with a comprehensive phylogeny to examine the structuring of floral diversity across pollination systems and continents. We focused on ornithophilous systems to test the hypothesis that some Old World Ericaceae were pollinated by now-extinct hummingbirds. RESULTS: Despite some support for floral differentiation at a continental scale, we found a large amount of variability within and among landmasses, due to both phylogenetic conservatism and parallel evolution. We found support for floral differentiation in anther and corolla traits across pollination systems, including among different ornithophilous systems. Corolla traits show inconclusive evidence that some Old World Ericaceae were pollinated by hummingbirds, while anther traits show stronger evidence. Some major shifts in floral traits are associated with changes in pollination system, but shifts within bee systems are likely also important. CONCLUSIONS: Studying the floral evolution of large, morphologically diverse, and widespread clades is feasible. We demonstrate that continent-specific radiations have led to widespread parallel evolution of floral morphology. We show that traits outside of the perianth may hold important clues to the ecological history of lineages.


Asunto(s)
Ericaceae , Polinización , Animales , Abejas , Filogenia , Flores/anatomía & histología , Fenotipo , Aves
4.
Ann Bot ; 132(4): 771-786, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37467174

RESUMEN

BACKGROUND: Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far. METHODS: Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes. KEY RESULTS: Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny. CONCLUSIONS: Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.


Asunto(s)
Genoma de Plastidios , Opuntia , Filogenia , Opuntia/genética , Genes de Plantas/genética , Genoma de Plastidios/genética , Plastidios/genética , Evolución Molecular
5.
Sci Rep ; 13(1): 9760, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328506

RESUMEN

Ephyrae, the early stages of scyphozoan jellyfish, possess a conserved morphology among species. However, ontogenetic transitions lead to morphologically different shapes among scyphozoan lineages, with important consequences for swimming biomechanics, bioenergetics and ecology. We used high-speed imaging to analyse biomechanical and kinematic variables of swimming in 17 species of Scyphozoa (1 Coronatae, 8 "Semaeostomeae" and 8 Rhizostomeae) at different developmental stages. Swimming kinematics of early ephyrae were similar, in general, but differences related to major lineages emerged through development. Rhizostomeae medusae have more prolate bells, shorter pulse cycles and higher swimming performances. Medusae of "Semaeostomeae", in turn, have more variable bell shapes and most species had lower swimming performances. Despite these differences, both groups travelled the same distance per pulse suggesting that each pulse is hydrodynamically similar. Therefore, higher swimming velocities are achieved in species with higher pulsation frequencies. Our results suggest that medusae of Rhizostomeae and "Semaeostomeae" have evolved bell kinematics with different optimized traits, rhizostomes optimize rapid fluid processing, through faster pulsations, while "semaeostomes" optimize swimming efficiency, through longer interpulse intervals that enhance mechanisms of passive energy recapture.


Asunto(s)
Hidrozoos , Escifozoos , Animales , Natación , Fenómenos Biomecánicos , Metabolismo Energético
6.
PeerJ ; 10: e14525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523475

RESUMEN

Background: Genome skimming is a popular method in plant phylogenomics that do not include a biased enrichment step, relying on random shallow sequencing of total genomic DNA. From these data the plastome is usually readily assembled and constitutes the bulk of phylogenetic information generated in these studies. Despite a few attempts to use genome skims to recover low copy nuclear loci for direct phylogenetic use, such endeavor remains neglected. Causes might include the trade-off between libraries with few reads and species with large genomes (i.e., missing data caused by low coverage), but also might relate to the lack of pipelines for data assembling. Methods: A pipeline and its companion R package designed to automate the recovery of low copy nuclear markers from genome skimming libraries are presented. Additionally, a series of analyses aiming to evaluate the impact of key assembling parameters, reference selection and missing data are presented. Results: A substantial amount of putative low copy nuclear loci was assembled and proved useful to base phylogenetic inference across the libraries tested (4 to 11 times more data than previously assembled plastomes from the same libraries). Discussion: Critical aspects of assembling low copy nuclear markers from genome skims include the minimum coverage and depth of a sequence to be used. More stringent values of these parameters reduces the amount of assembled data and increases the relative amount of missing data, which can compromise phylogenetic inference, in turn relaxing the same parameters might increase sequence error. These issues are discussed in the text, and parameter tuning through multiple comparisons tracking their effects on support and congruence is highly recommended when using this pipeline. The skimmingLoci pipeline (https://github.com/mreginato/skimmingLoci) might stimulate the use of genome skims to recover nuclear loci for direct phylogenetic use, increasing the power of genome skimming data to resolve phylogenetic relationships, while reducing the amount of sequenced DNA that is commonly wasted.


Asunto(s)
ADN , Genoma de Planta , Filogenia , Genoma de Planta/genética , Análisis de Secuencia de ADN/métodos , Biblioteca Genómica
7.
Mol Phylogenet Evol ; 175: 107581, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810973

RESUMEN

Sonerileae is a diverse Melastomataceae lineage comprising ca. 1000 species in 44 genera, with >70% of genera and species distributed in Asia. Asian Sonerileae are taxonomically intractable with obscure generic circumscriptions. The backbone phylogeny of this group remains poorly resolved, possibly due to complexity caused by rapid species radiation in early and middle Miocene, which hampers further systematic study. Here, we used genome resequencing data to reconstruct the phylogeny of Asian Sonerileae. Three parallel datasets, viz. single-copy ortholog (SCO), genomic SNPs, and whole plastome, were assembled from genome resequencing data of 205 species for this purpose. Based on these genome-scale data, we provided the first well resolved phylogeny of Asian Sonerileae, with 34 major clades identified and 74% of the interclade relationships consistently resolved by both SCO and genomic data. Meanwhile, widespread phylogenetic discordance was detected among SCO gene trees as well as species trees reconstructed using different tree estimation methods (concatenation/site-based coalescent method/summary method) or different datasets (SCO/genomic/plastome). We explored sources of discordance using multiple approaches and found that the observed discordance in Asian Sonerileae was mainly caused by a combination of biased distribution of missing data, random noise from uninformative genes, incomplete lineage sorting, and hybridization/introgression. Exploration of these sources can enable us to generate hypotheses for future testing, which is the first step towards understanding the evolution of Asian Sonerileae. We also detected high levels of homoplasy for some characters traditionally used in taxonomy, which explains current chaotic generic delimitations. The backbone phylogeny of Asian Sonerileae revealed in this study offers a solid basis for future taxonomic revision at the generic level.


Asunto(s)
Melastomataceae , Genómica/métodos , Hibridación Genética , Filogenia , Análisis de Secuencia de ADN
8.
Front Plant Sci ; 11: 729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636853

RESUMEN

Chloroplast genomes (plastomes) are frequently treated as highly conserved among land plants. However, many lineages of vascular plants have experienced extensive structural rearrangements, including inversions and modifications to the size and content of genes. Cacti are one of these lineages, containing the smallest plastome known for an obligately photosynthetic angiosperm, including the loss of one copy of the inverted repeat (∼25 kb) and the ndh gene suite, but only a few cacti from the subfamily Cactoideae have been sufficiently characterized. Here, we investigated the variation of plastome sequences across the second-major lineage of the Cactaceae, the subfamily Opuntioideae, to address (1) how variable is the content and arrangement of chloroplast genome sequences across the subfamily, and (2) how phylogenetically informative are the plastome sequences for resolving major relationships among the clades of Opuntioideae. Our de novo assembly of the Opuntia quimilo plastome recovered an organelle of 150,347 bp in length with both copies of the inverted repeat and the presence of all the ndh gene suite. An expansion of the large single copy unit and a reduction of the small single copy unit was observed, including translocations and inversion of genes, as well as the putative pseudogenization of some loci. Comparative analyses among all clades within Opuntioideae suggested that plastome structure and content vary across taxa of this subfamily, with putative independent losses of the ndh gene suite and pseudogenization of genes across disparate lineages, further demonstrating the dynamic nature of plastomes in Cactaceae. Our plastome dataset was robust in resolving three tribes with high support within Opuntioideae: Cylindropuntieae, Tephrocacteae and Opuntieae. However, conflicting topologies were recovered among major clades when exploring different assemblies of markers. A plastome-wide survey for highly informative phylogenetic markers revealed previously unused regions for future use in Sanger-based studies, presenting a valuable dataset with primers designed for continued evolutionary studies across Cactaceae. These results bring new insights into the evolution of plastomes in cacti, suggesting that further analyses should be carried out to address how ecological drivers, physiological constraints and morphological traits of cacti may be related with the common rearrangements in plastomes that have been reported across the family.

9.
Appl Plant Sci ; 8(5): e11345, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32477841

RESUMEN

PREMISE: Putatively single-copy nuclear (SCN) loci, which are identified using genomic resources of closely related species, are ideal for phylogenomic inference. However, suitable genomic resources are not available for many clades, including Melastomataceae. We introduce a versatile approach to identify SCN loci for clades with few genomic resources and use it to develop probes for target enrichment in the distantly related Memecylon and Tibouchina (Melastomataceae). METHODS: We present a two-tiered pipeline. First, we identified putatively SCN loci using MarkerMiner and transcriptomes from distantly related species in Melastomataceae. Published loci and genes of functional significance were then added (384 total loci). Second, using HybPiper, we retrieved 689 homologous template sequences for these loci using genome-skimming data from within the focal clades. RESULTS: We sequenced 193 loci common to Memecylon and Tibouchina. Probes designed from 56 template sequences successfully targeted sequences in both clades. Probes designed from genome-skimming data within a focal clade were more successful than probes designed from other sources. DISCUSSION: Our pipeline successfully identified and targeted SCN loci in Memecylon and Tibouchina, enabling phylogenomic studies in both clades and potentially across Melastomataceae. This pipeline could be easily applied to other clades with few genomic resources.

10.
Mol Phylogenet Evol ; 148: 106815, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278864

RESUMEN

Species of plants with different life history strategies may differ in their seed dispersal mechanisms, impacting their distribution and diversification patterns. Shorter or longer distance dispersal is favored by different dispersal modes, facilitating (or constraining) population isolation, which can, in turn, impact speciation and species range sizes. While these associations are intuitive, few studies have explicitly tested these hypotheses for large clades of angiosperms. The plant family Melastomataceae is found on disparate habitats with different dispersal modes, representing a good model to address these questions. In this study, we reconstruct the phylogeny of Melastomataceae and gather data on their dispersal mode and range size to test the impact of dispersal mode on diversification and range size evolution. We found that abiotic dispersal is ancestral in the family, while biotic dispersal evolved multiple times. Species richness distribution is very similar across dispersal modes, although abiotically dispersed species tend to be relatively more diverse in seasonal environments. Range sizes across dispersal modes are not significantly different, although biotically dispersed species have slightly wider distributions. Model comparisons indicate that factors other than dispersal mode might have driven diversification heterogeneity. We did not find evidence for the role of dispersal mode driving diversification rates or range size in the Melastomataceae, suggesting a complex macroevolutionary scenario for this diverse angiosperm family. The bulk of changes to biotic dispersal coinciding with an increase in passerine diversification suggests a possible "past" key innovation in Melastomataceae. Future studies should investigate the role of other diversification drivers in the family and the relatively higher diversity of abiotically dispersed species in open habitats.


Asunto(s)
Biodiversidad , Geografía , Melastomataceae/fisiología , Dispersión de Semillas/fisiología , Clima Tropical , Filogenia , Procesos Estocásticos
11.
Proc Biol Sci ; 287(1923): 20192933, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32183631

RESUMEN

Mountains are among the most biodiverse areas on the globe. In young mountain ranges, exceptional plant species richness is often associated with recent and rapid radiations linked to the mountain uplift itself. In ancient mountains, however, orogeny vastly precedes the evolution of vascular plants, so species richness has been explained by species accumulation during long periods of low extinction rates. Here we evaluate these assumptions by analysing plant diversification dynamics in the campo rupestre, an ecosystem associated with pre-Cambrian mountaintops and highlands of eastern South America, areas where plant species richness and endemism are among the highest in the world. Analyses of 15 angiosperm clades show that radiations of endemics exhibit fastest rates of diversification during the last 5 Myr, a climatically unstable period. However, results from ancestral range estimations using different models disagree on the age of the earliest in situ speciation events and point to a complex floristic assembly. There is a general trend for higher diversification rates associated with these areas, but endemism may also increase or reduce extinction rates, depending on the group. Montane habitats, regardless of their geological age, may lead to boosts in speciation rates by accelerating population isolation in archipelago-like systems, circumstances that can also result in higher extinction rates and fast species turnover, misleading the age estimates of endemic lineages.


Asunto(s)
Biodiversidad , Evolución Biológica , Plantas/clasificación , Altitud , Ecosistema , Filogenia , América del Sur
12.
PeerJ ; 8: e8752, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32219027

RESUMEN

We describe Miconia lucenae R.Goldenb. & Michelang., a new species from the montane Atlantic Forest in Santa Teresa in the state of Espírito Santo. Our analysis, based on three plastid spacers (atpF-atpH, psbK-psbl and trnS-trnG), one plastid gene (ndhF, not available for M. lucenae), and two nuclear ribosomal loci (nrITS and nrETS), showed that it belongs to a small clade with Miconia paradoxa (Mart. ex DC.) Triana (Minas Gerais) and M. michelangeliana R.Goldenb. & L.Kollmann (Espírito Santo). The three species in the "Paradoxa clade" can be recognized by the plants with glabrous or glabrescent branches and leaves, white petals and yellow stamens, these with the connectives not prolonged below the thecae, ventrally unappendaged, dorsally unappendaged or with a minute tooth, the latter bilobed or not, glabrous ovary, and the fruits with a persistent calyx. Miconia lucenae can be recognized, among the species in this clade, by the shrubby plants with terete young branches, short inflorescences, usually with red axes, and the 2-bracteolate, sessile, 4-merous flowers, with a ciliolate inner portion of the sepals, lanceolate petals, and 4-celled ovaries. This species can be considered as endangered according to IUCN criteria.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 207: 132-142, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30223247

RESUMEN

The conformational study on the new S­nitrosothiols esters (SNO-ESTERS): para-substituted (X = H, OMe, Cl and NO2) S­nitrosothiol derivatives 2­methyl­2­(sulfanyl)propyl phenylacetates (R1), 2­(4­isobutylphenyl)propanoate (ibuprofen, R2), and 2­(4­isobutylphenyl)propanoate of 2­methyl­2­(nitrososulfanyl)propyl (naproxen, R3) was performed using infrared spectroscopy (IR) in solvents with increasing polarity (CCl4, CH3Cl, and CH3CN), and theoretical calculations, to determine the preferential conformer and the potential of these compounds to release nitric oxide (NO). S­Nitrosothiols were synthesized by esterification reactions, using chlorides of the corresponding carboxylic acids, with good yields (~60%). IR results showed that these compounds presented only one conformation, and the experimental data were supported by the theoretical results obtained by density functional theory (DFT) calculations using the 6311+G (2df, 2p) basis set. The calculations revealed that all S­nitrosothiols presented one preferential anticlinal (ac) geometric conformation, which agrees with the data obtained experimentally in CCl4. These conformers are stabilized by intramolecular hydrogen bonds. Examination of the geometry with regard to the RSNO group revealed that these compounds are preferentially in the trans (anti) conformation. The calculation of the orbital interactions using the Natural Bond Orbital (NBO) method showed that the nO(NO) → σ(SN)∗ hyper-conjugative interaction increases the SN bond length. The strong nS → π(NO)∗ interaction and electronic delocalization induces a partial π character to the SN bond. The weak σSN bond indicates strong delocalization of the electron pair in O (NO) by the nO(NO) → σ(SN)∗ interaction, thereby increasing the capacity of NO release from SNO-ESTERS.


Asunto(s)
Ibuprofeno/análogos & derivados , Naproxeno/análogos & derivados , Donantes de Óxido Nítrico/química , S-Nitrosotioles/química , Electrones , Esterificación , Ibuprofeno/síntesis química , Modelos Moleculares , Conformación Molecular , Naproxeno/síntesis química , Donantes de Óxido Nítrico/síntesis química , Teoría Cuántica , S-Nitrosotioles/síntesis química , Espectrofotometría Infrarroja , Electricidad Estática
14.
Phys Chem Chem Phys ; 19(35): 24330-24340, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28849823

RESUMEN

Single and double protonated (E)-1,4-diamine-2-butenes were evaluated as a model system to probe isomerization during the ESI processes employing infrared multiple-photon dissociation (IRMPD) spectroscopy and density function theory (DFT) calculations, including implicit and explicit solvation models. Our results show that the preferential protonation takes place at the amines for singly protonated species and that the double bond is not protonated even under double protonation, as expected from known pKa values. This behavior was shown to reflect the (E)-(Z) interconversion rate, as no interconversion was observed nor predicted by implicit solvation model based on density (SMD) calculations even by the olefin protonation pathway. Explicit solvent calculations show that the singly protonated (E) configuration observed in the gas phase is also the most stable configuration in solution due to molecular interactions with the solvent that are absent for the (Z) configuration. The explicit solvation calculation reverts the supposed gas-phase stability of the (Z) configuration in comparison to (E) from -9 kcal mol-1 (in relative Gibbs free energy) in the gas phase to +89 kcal mol-1 (in total potential energy) as depicted by explicit Monte Carlo (MC) simulations. Together with previous results for the saturated 1,4-diamines from Morton and coworkers that show the (Z) configuration related conformation to be the most stable geometry in the gas-phase due to intermolecular hydrogen bonding, our experiments clearly show that conformational reorganizations can take place during the ESI process. These results suggest that gas-phase experiments and vacuum calculations may not be valid as evidence for conformations in solution without prior testing to check for isomerization during the ESI process.

15.
PeerJ ; 4: e2715, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917315

RESUMEN

BACKGROUND: In the past three decades, several studies have predominantly relied on a small sample of the plastome to infer deep phylogenetic relationships in the species-rich Melastomataceae. Here, we report the first full plastid sequences of this family, compare general features of the sampled plastomes to other sequenced Myrtales, and survey the plastomes for highly informative regions for phylogenetics. METHODS: Genome skimming was performed for 16 species spread across the Melastomataceae. Plastomes were assembled, annotated and compared to eight sequenced plastids in the Myrtales. Phylogenetic inference was performed using Maximum Likelihood on six different data sets, where putative biases were taken into account. Summary statistics were generated for all introns and intergenic spacers with suitable size for polymerase chain reaction (PCR) amplification and used to rank the markers by phylogenetic information. RESULTS: The majority of the plastomes sampled are conserved in gene content and order, as well as in sequence length and GC content within plastid regions and sequence classes. Departures include the putative presence of rps16 and rpl2 pseudogenes in some plastomes. Phylogenetic analyses of the majority of the schemes analyzed resulted in the same topology with high values of bootstrap support. Although there is still uncertainty in some relationships, in the highest supported topologies only two nodes received bootstrap values lower than 95%. DISCUSSION: Melastomataceae plastomes are no exception for the general patterns observed in the genomic structure of land plant chloroplasts, being highly conserved and structurally similar to most other Myrtales. Despite the fact that the full plastome phylogeny shares most of the clades with the previously widely used and reduced data set, some changes are still observed and bootstrap support is higher. The plastome data set presented here is a step towards phylogenomic analyses in the Melastomataceae and will be a useful resource for future studies.

16.
Ann Bot ; 118(3): 445-58, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27401539

RESUMEN

BACKGROUND AND AIMS: Putative processes related to floral diversification and its relation to speciation are still largely unaccounted for in the Melastomataceae. Leandra s.str. is one of the most diverse lineages of the Neotropical Miconieae and ranks among the ten most diverse groups in the Atlantic Forest. Here, we describe the floral diversity of this lineage in a continuous framework and address several questions related to floral evolution and putative developmental and environmental constraints in its morphology. METHODS: The morphological data set includes individual size measurements and shape scores (from elliptical Fourier analysis) for hypanthia, petals, stamens and styles. We evaluate whether there is evidence of correlation among these floral structures, shifts and convergent patterns, and association of these traits with elevation. KEY RESULTS: Leandra s.str. flower structures present a strong phylogenetic signal and tend to be conserved among close relatives. The extremes in flower regimes seem to be quite distinct, but non-overlapping discrete flower types are not observed. Overall, the morphology of Leandra s.str. floral structures is correlated, and anther colour and inflorescence architecture correlate with flower structures. Additionally, the rates of species diversification and morphological evolution are correlated in most clades. CONCLUSIONS: Although some flower regimes tend to occur in different elevational ranges, no significant association is observed. The general idea that hypanthium-ovary fusion is associated with fruit types in the Melastomataceae does not hold for Leandra s.str., where, instead, hypanthium-ovary fusion seems to be associated with anther shape. The lowest rate of flower morphological change, when compared with species diversification rates, is observed in the clade that possesses the most specialized flowers in the group. While stuck on a single general pollination system, Leandra s.str. seems to be greatly wandering around it, given the flower diversity and convergent patterns observed in this group.


Asunto(s)
Flores/anatomía & histología , Melastomataceae/anatomía & histología , Biodiversidad , Evolución Biológica , Flores/genética , Flores/fisiología , Melastomataceae/genética , Melastomataceae/fisiología , Fenotipo , Filogenia , Polinización
17.
Appl Plant Sci ; 4(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26819862

RESUMEN

PREMISE OF THE STUDY: Low-copy nuclear gene primers were developed for phylogenetic studies across the Melastomataceae. METHODS AND RESULTS: Total genomic libraries from eight species in the Melastomataceae along with one transcriptome were used for marker identification and primer design. Eight exon-primed intron-crossing markers were amplified with success in taxa of nine tribes in the Melastomataceae. The new markers were directly sequenced for eight samples of closely related species of Miconia (Chaenanthera clade) in the tribe Miconieae. The DNA sequences for the eight loci ranged from 660 to 818 aligned base pairs. Compared with four commonly used markers in other studies, the loci developed here had a higher number of variable sites than plastid spacers (7-16 vs. 26-45) and comparable variation to the ribosomal spacers (28-39). CONCLUSIONS: The novel primer pairs should be useful for a broad range of studies of systematics and evolution in the diverse Melastomataceae.

18.
Mol Phylogenet Evol ; 96: 17-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26700371

RESUMEN

Phylogenetic studies in Melastomataceae have demonstrated the need for taxonomic rearrangements in the current classification. Nonetheless, melastomes are among the most diverse groups of plants and several cases of known artificial taxa have been observed and awaiting further resolution. The Leandra s.str. clade, with ca. 200 species, includes the majority of the taxa traditionally treated in the genus Leandra and is almost restricted to eastern Brazil. In earlier studies, some attempts have been made to infer the relationships within Leandra s.str., but the sampling was sparse and the resolution low inside the clade. Here, we attempt to provide an improved phylogenetic hypothesis for this group on which to base further studies. Specifically, we provide a comprehensive taxon sampling and attempt to infer a species tree for this group, dissecting potential noise in the phylogenetic reconstruction, such as paralogy, rogue taxa, hybridization and incomplete lineage sorting. Our data set includes 126 ingroup species (192 terminals) and four partitions (six markers). We implement the (∗)BEAST model for species tree inference and perform several simulation methods to assess model fit and to discuss potential causes for the observed patterns. Major lineages of Leandra s.str. were delineated, a strictly bifurcating species tree model seems to not account for the observed data, and hybridization is very likely an important evolutionary force in this group.


Asunto(s)
Melastomataceae/clasificación , Melastomataceae/genética , Filogenia , Brasil , Simulación por Computador , Evolución Molecular , Hibridación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...