Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 505(7482): 239-43, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24291791

RESUMEN

The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.


Asunto(s)
Biocombustibles/provisión & distribución , Metabolismo de los Hidratos de Carbono , Etanol/metabolismo , Ingeniería Genética , Phaeophyceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alginatos/metabolismo , Anaerobiosis , Ascomicetos/genética , Ascomicetos/metabolismo , Biotecnología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Evolución Molecular , Fermentación , Prueba de Complementación Genética , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Manitol/metabolismo , Phaeophyceae/genética , Ácido Quínico/metabolismo , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Algas Marinas/genética , Algas Marinas/metabolismo , Ácidos Urónicos/metabolismo
2.
Nat Commun ; 4: 2503, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24056574

RESUMEN

Evaluating the performance of engineered biological systems with high accuracy and precision is nearly impossible with the use of plasmids due to phenotypic noise generated by genetic instability and natural population dynamics. Minimizing this uncertainty therefore requires a paradigm shift towards engineering at the genomic level. Here, we introduce an advanced design principle for the stable installment and implementation of complex biological systems through recombinase-assisted genome engineering (RAGE). We apply this concept to the development of a robust strain of Escherichia coli capable of producing ethanol directly from brown macroalgae. RAGE significantly expedites the optimal implementation of a 34 kb heterologous pathway for alginate metabolism based on genetic background, integration locus, copy number and compatibility with two other pathway modules (alginate degradation and ethanol production). The resulting strain achieves a ~40% higher titre than its plasmid-based counterpart and enables substantial improvements in titre (~330%) and productivity (~1,200%) after 50 generations.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Recombinasas/genética , Alginatos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Etanol/metabolismo , Ingeniería Genética , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Redes y Vías Metabólicas , Mutagénesis Insercional , Phaeophyceae/química , Plásmidos , Recombinasas/metabolismo
3.
Science ; 335(6066): 308-13, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22267807

RESUMEN

Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).


Asunto(s)
Alginatos/metabolismo , Biocombustibles , Escherichia coli/genética , Etanol/metabolismo , Ingeniería Metabólica , Phaeophyceae/metabolismo , Algas Marinas/metabolismo , Vibrio/enzimología , Alginatos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Biomasa , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/metabolismo , Fermentación , Genes Bacterianos , Glucosa/metabolismo , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Ácido Láctico/metabolismo , Manitol/metabolismo , Redes y Vías Metabólicas , Sistemas de Lectura Abierta , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Vibrio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...