Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6695): eadi2421, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696576

RESUMEN

Cell cycle events are coordinated by cyclin-dependent kinases (CDKs) to ensure robust cell division. CDK4/6 and CDK2 regulate the growth 1 (G1) to synthesis (S) phase transition of the cell cycle by responding to mitogen signaling, promoting E2F transcription and inhibition of the anaphase-promoting complex. We found that this mechanism was still required in G2-arrested cells to prevent cell cycle exit after the S phase. This mechanism revealed a role for CDK4/6 in maintaining the G2 state, challenging the notion that the cell cycle is irreversible and that cells do not require mitogens after passing the restriction point. Exit from G2 occurred during ribotoxic stress and was actively mediated by stress-activated protein kinases. Upon relief of stress, a significant fraction of cells underwent a second round of DNA replication that led to whole-genome doubling.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Replicación del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Humanos , Estrés Fisiológico , Fase S , Factores de Transcripción E2F/metabolismo , Factores de Transcripción E2F/genética
2.
Dev Cell ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38640927

RESUMEN

Whole-genome duplication (WGD) is a frequent event in cancer evolution that fuels chromosomal instability. WGD can result from mitotic errors or endoreduplication, yet the molecular mechanisms that drive WGD remain unclear. Here, we use live single-cell analysis to characterize cell-cycle dynamics upon aberrant Ras-ERK signaling. We find that sustained ERK signaling in human cells leads to reactivation of the APC/C in G2, resulting in tetraploid G0-like cells that are primed for WGD. This process is independent of DNA damage or p53 but dependent on p21. Transcriptomics analysis and live-cell imaging showed that constitutive ERK activity promotes p21 expression, which is necessary and sufficient to inhibit CDK activity and which prematurely activates the anaphase-promoting complex (APC/C). Finally, either loss of p53 or reduced ERK signaling allowed for endoreduplication, completing a WGD event. Thus, sustained ERK signaling-induced G2 cell cycle exit represents an alternative path to WGD.

3.
Nat Cell Biol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689013

RESUMEN

Tissue regeneration and maintenance rely on coordinated stem cell behaviours. This orchestration can be impaired by oncogenic mutations leading to cancer. However, it is largely unclear how oncogenes perturb stem cells' orchestration to disrupt tissue. Here we used intravital imaging to investigate the mechanisms by which oncogenic Kras mutation causes tissue disruption in the hair follicle. Through longitudinally tracking hair follicles in live mice, we found that KrasG12D, a mutation that can lead to squamous cell carcinoma, induces epithelial tissue deformation in a spatiotemporally specific manner, linked with abnormal cell division and migration. Using a reporter mouse capture real-time ERK signal dynamics at the single-cell level, we discovered that KrasG12D, but not a closely related mutation HrasG12V, converts ERK signal in stem cells from pulsatile to sustained. Finally, we demonstrated that interrupting sustained ERK signal reverts KrasG12D-induced tissue deformation through modulating specific features of cell migration and division.

4.
Cell Stem Cell ; 30(7): 962-972.e6, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37419106

RESUMEN

The ability of stem cells to build and replenish tissues depends on support from their niche. Although niche architecture varies across organs, its functional importance is unclear. During hair follicle growth, multipotent epithelial progenitors build hair via crosstalk with their remodeling fibroblast niche, the dermal papilla, providing a powerful model to functionally interrogate niche architecture. Through mouse intravital imaging, we show that dermal papilla fibroblasts remodel individually and collectively to form a morphologically polarized, structurally robust niche. Asymmetric TGF-ß signaling precedes morphological niche polarity, and loss of TGF-ß signaling in dermal papilla fibroblasts leads them to progressively lose their stereotypic architecture, instead surrounding the epithelium. The reorganized niche induces the redistribution of multipotent progenitors but nevertheless supports their proliferation and differentiation. However, the differentiated lineages and hairs produced by progenitors are shorter. Overall, our results reveal that niche architecture optimizes organ efficiency but is not absolutely essential for organ function.


Asunto(s)
Folículo Piloso , Cabello , Ratones , Animales , Diferenciación Celular , Epitelio , Factor de Crecimiento Transformador beta
5.
Cell Syst ; 13(11): 885-894.e4, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36356576

RESUMEN

The classic network of mitogen-activated protein kinases (MAPKs) is highly interconnected and controls a diverse array of biological processes. In multicellular eukaryotes, the MAPKs ERK, JNK, and p38 control opposing cell behaviors but are often activated simultaneously, raising questions about how input-output specificity is achieved. Here, we use multiplexed MAPK activity biosensors to investigate how cell fate control emerges from the connectivity and dynamics of the MAPK network. Through chemical and genetic perturbation, we systematically explore the outputs and functions of all the MAP3 kinases encoded in the human genome and show that MAP3Ks control cell fate by triggering unique combinations of MAPK activity. We show that these MAPK activity combinations explain the paradoxical dual role of JNK signaling as pro-apoptotic or pro-proliferative kinase. Overall, our integrative analysis indicates that the MAPK network operates as a unit to control cell fate and shifts the focus from MAPKs to MAP3Ks to better understand signaling-mediated control of cell fate.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Sistema de Señalización de MAP Quinasas , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal
6.
Nat Commun ; 12(1): 3175, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039988

RESUMEN

Antagonistic pleiotropy is a foundational theory that predicts aging-related diseases are the result of evolved genetic traits conferring advantages early in life. Here we examine CaMKII, a pluripotent signaling molecule that contributes to common aging-related diseases, and find that its activation by reactive oxygen species (ROS) was acquired more than half-a-billion years ago along the vertebrate stem lineage. Functional experiments using genetically engineered mice and flies reveal ancestral vertebrates were poised to benefit from the union of ROS and CaMKII, which conferred physiological advantage by allowing ROS to increase intracellular Ca2+ and activate transcriptional programs important for exercise and immunity. Enhanced sensitivity to the adverse effects of ROS in diseases and aging is thus a trade-off for positive traits that facilitated the early and continued evolutionary success of vertebrates.


Asunto(s)
Envejecimiento/fisiología , Evolución Biológica , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vertebrados/fisiología , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Edición Génica , Técnicas de Sustitución del Gen , Masculino , Ratones , Modelos Animales , Oxidación-Reducción , Filogenia , Aptitud Física/fisiología , Mutación Puntual
7.
STAR Protoc ; 2(2): 100446, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33899025

RESUMEN

Determining how signaling dynamics relate to gene expression and cell fate is essential to understanding multicellular development. We present a unified live imaging and lineage analysis method that allows integrated analysis of both techniques in the same mouse embryos. This protocol describes the embryo isolation, confocal imaging, immunofluorescence, and in silico alignment required to connect time-lapse and endpoint measurements. By utilizing different biosensors and fixed readouts, this method allows interrogation of signaling dynamics that specify cell fates in developing embryos. For complete details on the use and execution of this protocol, please refer to Pokrass et al. (2020).


Asunto(s)
Blastocisto , Microscopía Confocal/métodos , Técnicas de Sonda Molecular , Imagen de Lapso de Tiempo/métodos , Animales , Blastocisto/citología , Blastocisto/metabolismo , Blastocisto/fisiología , Células Cultivadas , Femenino , Imagenología Tridimensional , Masculino , Ratones , Transducción de Señal/fisiología
8.
Nat Commun ; 12(1): 1836, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758175

RESUMEN

To prevent damage to the host or its commensal microbiota, epithelial tissues must match the intensity of the immune response to the severity of a biological threat. Toll-like receptors allow epithelial cells to identify microbe associated molecular patterns. However, the mechanisms that mitigate biological noise in single cells to ensure quantitatively appropriate responses remain unclear. Here we address this question using single cell and single molecule approaches in mammary epithelial cells and primary organoids. We find that epithelial tissues respond to bacterial microbe associated molecular patterns by activating a subset of cells in an all-or-nothing (i.e. digital) manner. The maximum fraction of responsive cells is regulated by a bimodal epigenetic switch that licenses the TLR2 promoter for transcription across multiple generations. This mechanism confers a flexible memory of inflammatory events as well as unique spatio-temporal control of epithelial tissue-level immune responses. We propose that epigenetic licensing in individual cells allows for long-term, quantitative fine-tuning of population-level responses.


Asunto(s)
Bacterias/inmunología , Células Epiteliales/inmunología , Inmunidad Innata , Lipopéptidos/inmunología , FN-kappa B/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Bacterias/metabolismo , Línea Celular , Citocinas/metabolismo , Citocinas/farmacología , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Flagelina/farmacología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Hibridación Fluorescente in Situ , Glándulas Mamarias Animales , Ratones , Organoides/efectos de los fármacos , Organoides/inmunología , Organoides/metabolismo , Regiones Promotoras Genéticas , RNA-Seq , Transducción de Señal/inmunología , Análisis de la Célula Individual , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/genética , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
9.
Dev Cell ; 55(3): 328-340.e5, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33091369

RESUMEN

Despite the noisy nature of single cells, multicellular organisms robustly generate different cell types from one zygote. This process involves dynamic cross regulation between signaling and gene expression that is difficult to capture with fixed-cell approaches. To study signaling dynamics and fate specification during preimplantation development, we generated a transgenic mouse expressing the ERK kinase translocation reporter and measured ERK activity in single cells of live embryos. Our results show primarily active ERK in both the inner cell mass and trophectoderm cells due to fibroblast growth factor (FGF) signaling. Strikingly, a subset of mitotic events results in a short pulse of ERK inactivity in both daughter cells that correlates with elevated endpoint NANOG levels. Moreover, endogenous tagging of Nanog in embryonic stem cells reveals that ERK inhibition promotes enhanced stabilization of NANOG protein after mitosis. Our data show that cell cycle, signaling, and differentiation are coordinated during preimplantation development.


Asunto(s)
Blastocisto/citología , Blastocisto/enzimología , Ciclo Celular , Linaje de la Célula , Sistema de Señalización de MAP Quinasas , Mamíferos/embriología , Animales , Estratos Germinativos/citología , Humanos , Ratones , Mitosis , Modelos Biológicos , Proteína Homeótica Nanog/metabolismo , Estabilidad Proteica , Reproducibilidad de los Resultados
10.
Elife ; 92020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32940599

RESUMEN

A large fraction of human cancers contain genetic alterations within the Mitogen Activated Protein Kinase (MAPK) signaling network that promote unpredictable phenotypes. Previous studies have shown that the temporal patterns of MAPK activity (i.e. signaling dynamics) differentially regulate cell behavior. However, the role of signaling dynamics in mediating the effects of cancer driving mutations has not been systematically explored. Here, we show that oncogene expression leads to either pulsatile or sustained ERK activity that correlate with opposing cellular behaviors (i.e. proliferation vs. cell cycle arrest, respectively). Moreover, sustained-but not pulsatile-ERK activity triggers ERK activity waves in unperturbed neighboring cells that depend on the membrane metalloprotease ADAM17 and EGFR activity. Interestingly, the ADAM17-EGFR signaling axis coordinates neighboring cell migration toward oncogenic cells and is required for oncogenic cell extrusion. Overall, our data suggests that the temporal patterns of MAPK activity differentially regulate cell autonomous and non-cell autonomous effects of oncogene expression.


In animals, the MAPK pathway is a network of genes that helps a cell to detect and then respond to an external signal by switching on or off a specific genetic program. In particular, cells use this pathway to communicate with each other. In an individual cell, the MAPK pathway shows fluctuations in activity over time. Mutations in the genes belonging to the MAPK pathway are often one of the first events that lead to the emergence of cancers. However, different mutations in the genes of the pathway can have diverse effects on a cell's behavior: some mutations cause the cell to divide while others make it migrate. Recent research has suggested that these effects may be caused by changes in the pattern of MAPK signaling activity over time. Here, Aikin et al. used fluorescent markers to document how different MAPK mutations influence the behavior of a human breast cell and its healthy neighbors. The experiments showed that cells with different MAPK mutations behaved in one of two ways: the signaling quickly pulsed between high and low levels of activity, or it remained at a sustained high level. In turn, these two signaling patterns altered cell behavior in different ways. Pulsed signaling led to more cell division, while sustained signaling stopped division and increased migration. Aikin et al. then examined the effect of the MAPK mutations on neighboring healthy cells. Sustained signaling from the cancerous cell caused a wave of signaling activity in the surrounding cells. This led the healthy cells to divide and migrate toward the cancerous cell, pushing it out of the tissue layer. It is not clear if these changes protect against or promote cancer progression in living tissue. However, these results explain why specific cancer mutations cause different behaviors in cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Neoplasias/genética , Oncogenes/genética , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Neoplasias/metabolismo
11.
Cell ; 182(2): 404-416.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32610081

RESUMEN

Problems arising during translation of mRNAs lead to ribosome stalling and collisions that trigger a series of quality control events. However, the global cellular response to ribosome collisions has not been explored. Here, we uncover a function for ribosome collisions in signal transduction. Using translation elongation inhibitors and general cellular stress conditions, including amino acid starvation and UV irradiation, we show that ribosome collisions activate the stress-activated protein kinase (SAPK) and GCN2-mediated stress response pathways. We show that the MAPKKK ZAK functions as the sentinel for ribosome collisions and is required for immediate early activation of both SAPK (p38/JNK) and GCN2 signaling pathways. Selective ribosome profiling and biochemistry demonstrate that although ZAK generally associates with elongating ribosomes on polysomal mRNAs, it specifically auto-phosphorylates on the minimal unit of colliding ribosomes, the disome. Together, these results provide molecular insights into how perturbation of translational homeostasis regulates cell fate.


Asunto(s)
Ribosomas/metabolismo , Estrés Fisiológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Anisomicina/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de la radiación , Activación Enzimática , Humanos , Quinasas Quinasa Quinasa PAM/deficiencia , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Fosforilación , Polirribosomas/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Rayos Ultravioleta , eIF-2 Quinasa/metabolismo
12.
Elife ; 92020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255427

RESUMEN

Mammalian cells typically start the cell-cycle entry program by activating cyclin-dependent protein kinase 4/6 (CDK4/6). CDK4/6 activity is clinically relevant as mutations, deletions, and amplifications that increase CDK4/6 activity contribute to the progression of many cancers. However, when CDK4/6 is activated relative to CDK2 remained incompletely understood. Here, we developed a reporter system to simultaneously monitor CDK4/6 and CDK2 activities in single cells and found that CDK4/6 activity increases rapidly before CDK2 activity gradually increases, and that CDK4/6 activity can be active after mitosis or inactive for variable time periods. Markedly, stress signals in G1 can rapidly inactivate CDK4/6 to return cells to quiescence but with reduced probability as cells approach S phase. Together, our study reveals a regulation of G1 length by temporary inactivation of CDK4/6 activity after mitosis, and a progressively increasing persistence in CDK4/6 activity that restricts cells from returning to quiescence as cells approach S phase.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Fase G1/genética , Estrés Fisiológico , Puntos de Control del Ciclo Celular , Línea Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Genes Reporteros , Humanos , Mitosis , Fase S/genética , Análisis de la Célula Individual/métodos
14.
Sci Signal ; 12(579)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040261

RESUMEN

Over the last decade, multiple studies have shown that signaling proteins activated in different temporal patterns, such as oscillatory, transient, and sustained, can result in distinct gene expression patterns or cell fates. However, the molecular events that ensure appropriate stimulus- and dose-dependent dynamics are not often understood and are difficult to investigate. Here, we used single-cell analysis to dissect the mechanisms underlying the stimulus- and dose-encoding patterns in the innate immune signaling network. We found that Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling dynamics relied on a dose-dependent, autoinhibitory loop that rendered cells refractory to further stimulation. Using inducible gene expression and optogenetics to perturb the network at different levels, we identified IL-1R-associated kinase 1 (IRAK1) as the dose-sensing node responsible for limiting signal flow during the innate immune response. Although the kinase activity of IRAK1 was not required for signal propagation, it played a critical role in inhibiting the nucleocytoplasmic oscillations of the transcription factor NF-κB. Thus, protein activities that may be "dispensable" from a topological perspective can nevertheless be essential in shaping the dynamic response to the external environment.


Asunto(s)
FN-kappa B/metabolismo , Transducción de Señal/fisiología , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/farmacología , Lipopolisacáridos/farmacología , Ratones , Microscopía Confocal , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
15.
Nat Protoc ; 13(1): 155-169, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29266096

RESUMEN

Although kinases are important regulators of many cellular processes, measuring their activity in live cells remains challenging. We have developed kinase translocation reporters (KTRs), which enable multiplexed measurements of the dynamics of kinase activity at a single-cell level. These KTRs are composed of an engineered construct in which a kinase substrate is fused to a bipartite nuclear localization signal (bNLS) and nuclear export signal (NES), as well as to a fluorescent protein for microscopy-based detection of its localization. The negative charge introduced by phosphorylation of the substrate is used to directly modulate nuclear import and export, thereby regulating the reporter's distribution between the cytoplasm and nucleus. The relative cytoplasmic versus nuclear fluorescence of the KTR construct (the C/N ratio) is used as a proxy for the kinase activity in living, single cells. Multiple KTRs can be studied in the same cell by fusing them to different fluorescent proteins. Here, we present a protocol to execute and analyze live-cell microscopy experiments using KTRs. We describe strategies for development of new KTRs and procedures for lentiviral expression of KTRs in a cell line of choice. Cells are then plated in a 96-well plate, from which multichannel fluorescent images are acquired with automated time-lapse microscopy. We provide detailed guidance for a computational analysis and parameterization pipeline. The entire procedure, from virus production to data analysis, can be completed in ∼10 d.


Asunto(s)
Imagen Molecular/métodos , Señales de Localización Nuclear/metabolismo , Fosfotransferasas , Proteínas Recombinantes de Fusión/metabolismo , Análisis de la Célula Individual/métodos , Núcleo Celular/química , Núcleo Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Señales de Localización Nuclear/genética , Fosforilación , Fosfotransferasas/análisis , Fosfotransferasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
16.
Cell ; 171(4): 877-889.e17, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28965759

RESUMEN

N6-methyladenosine (m6A), installed by the Mettl3/Mettl14 methyltransferase complex, is the most prevalent internal mRNA modification. Whether m6A regulates mammalian brain development is unknown. Here, we show that m6A depletion by Mettl14 knockout in embryonic mouse brains prolongs the cell cycle of radial glia cells and extends cortical neurogenesis into postnatal stages. m6A depletion by Mettl3 knockdown also leads to a prolonged cell cycle and maintenance of radial glia cells. m6A sequencing of embryonic mouse cortex reveals enrichment of mRNAs related to transcription factors, neurogenesis, the cell cycle, and neuronal differentiation, and m6A tagging promotes their decay. Further analysis uncovers previously unappreciated transcriptional prepatterning in cortical neural stem cells. m6A signaling also regulates human cortical neurogenesis in forebrain organoids. Comparison of m6A-mRNA landscapes between mouse and human cortical neurogenesis reveals enrichment of human-specific m6A tagging of transcripts related to brain-disorder risk genes. Our study identifies an epitranscriptomic mechanism in heightened transcriptional coordination during mammalian cortical neurogenesis.


Asunto(s)
Neurogénesis , Prosencéfalo/embriología , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Animales , Ciclo Celular , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Organoides/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo , Estabilidad del ARN
17.
Dev Cell ; 42(5): 542-553.e4, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28826819

RESUMEN

Kinase translocation reporters (KTRs) are genetically encoded fluorescent activity sensors that convert kinase activity into a nucleocytoplasmic shuttling equilibrium for visualizing single-cell signaling dynamics. Here, we adapt the first-generation KTR for extracellular signal-regulated kinase (ERK) to allow easy implementation in vivo. This sensor, "ERK-nKTR," allows quantitative and qualitative assessment of ERK activity by analysis of individual nuclei and faithfully reports ERK activity during development and neural function in diverse cell contexts in Caenorhabditis elegans. Analysis of ERK activity over time in the vulval precursor cells, a well-characterized paradigm of epidermal growth factor receptor (EGFR)-Ras-ERK signaling, has identified dynamic features not evident from analysis of developmental endpoints alone, including pulsatile frequency-modulated signaling associated with proximity to the EGF source. The toolkit described here will facilitate studies of ERK signaling in other C. elegans contexts, and the design features will enable implementation of this technology in other multicellular organisms.


Asunto(s)
Técnicas Biosensibles/métodos , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Linaje de la Célula , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Línea Celular , Movimiento Celular , Núcleo Celular/metabolismo , Femenino , Genes Reporteros , Células Germinativas/citología , Mamíferos , Mutación/genética , Mioblastos/citología , Neuronas/citología , Fosforilación , Reproducibilidad de los Resultados , Células Madre/citología , Células Madre/metabolismo , Fracciones Subcelulares/metabolismo , Vulva/citología
18.
Integr Biol (Camb) ; 7(4): 412-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25734609

RESUMEN

Tight regulation of the MAP kinase Hog1 is crucial for survival under changing osmotic conditions. Interestingly, we found that Hog1 phosphorylates multiple upstream components, implying feedback regulation within the signaling cascade. Taking advantage of an unexpected link between glucose availability and Hog1 activity, we used quantitative single cell measurements and computational modeling to unravel feedback regulation operating in addition to the well-known adaptation feedback triggered by glycerol accumulation. Indeed, we found that Hog1 phosphorylates its activating kinase Ssk2 on several sites, and cells expressing a non-phosphorylatable Ssk2 mutant are partially defective for feedback regulation and proper control of basal Hog1 activity. Together, our data suggest that Hog1 activity is controlled by intertwined regulatory mechanisms operating with varying kinetics, which together tune the Hog1 response to balance basal Hog1 activity and its steady-state level after adaptation to high osmolarity.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Glucosa/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osmorregulación/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Simulación por Computador , Modelos Biológicos , Presión Osmótica/fisiología
19.
Cell ; 157(7): 1724-34, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949979

RESUMEN

Increasing evidence has shown that population dynamics are qualitatively different from single-cell behaviors. Reporters to probe dynamic, single-cell behaviors are desirable yet relatively scarce. Here, we describe an easy-to-implement and generalizable technology to generate reporters of kinase activity for individual cells. Our technology converts phosphorylation into a nucleocytoplasmic shuttling event that can be measured by epifluorescence microscopy. Our reporters reproduce kinase activity for multiple types of kinases and allow for calculation of active kinase concentrations via a mathematical model. Using this technology, we made several experimental observations that had previously been technicallyunfeasible, including stimulus-dependent patterns of c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) activation. We also measured JNK, p38, and ERK activities simultaneously, finding that p38 regulates the peak number, but not the intensity, of ERK fluctuations. Our approach opens the possibility of analyzing a wide range of kinase-mediated processes in individual cells.


Asunto(s)
Técnicas Biosensibles/métodos , Fosfotransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Quinasas JNK Activadas por Mitógenos/química , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de la Célula Individual
20.
Nat Methods ; 10(12): 1192-5, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24185838

RESUMEN

To test the promise of whole-cell modeling to facilitate scientific inquiry, we compared growth rates simulated in a whole-cell model with experimental measurements for all viable single-gene disruption Mycoplasma genitalium strains. Discrepancies between simulations and experiments led to predictions about kinetic parameters of specific enzymes that we subsequently validated. These findings represent, to our knowledge, the first application of whole-cell modeling to accelerate biological discovery.


Asunto(s)
Biología Computacional/métodos , Modelos Biológicos , Mycoplasma genitalium/genética , Mycoplasma genitalium/metabolismo , Biología de Sistemas , Proteínas Bacterianas/metabolismo , Catálisis , Simulación por Computador , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Genes Bacterianos/genética , Fenotipo , Análisis de Regresión , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...