Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Infect Dis ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38330357

RESUMEN

INTRODUCTION: Malaria is preventable yet causes >600,000 deaths annually. RTS, S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation Phase 1 study of a recombinant, full-length circumsporozoite protein vaccine (rCSP) administered with adjuvant GLA-LSQ on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naïve adults. Primary endpoints were safety and reactogenicity. Secondary endpoints were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection (CHMI). RESULTS: Participants were enrolled into four groups receiving rCSP/GLA-LSQ: 10 µg x 3 (n = 20), 30 µg x 3 (n = 10), 60 µg x 3 (n = 10) or 60 µg x 2 (n = 9); ten participants received 30 µg rCSP alone x 3; and six infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent CHMI 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher IgG titers, but did not achieve previously established RTS, S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess if adjuvant or schedule adjustments improve efficacy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03589794.

2.
Nat Med ; 30(1): 117-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38167935

RESUMEN

Over 75% of malaria-attributable deaths occur in children under the age of 5 years. However, the first malaria vaccine recommended by the World Health Organization (WHO) for pediatric use, RTS,S/AS01 (Mosquirix), has modest efficacy. Complementary strategies, including monoclonal antibodies, will be important in efforts to eradicate malaria. Here we characterize the circulating B cell repertoires of 45 RTS,S/AS01 vaccinees and discover monoclonal antibodies for development as potential therapeutics. We generated >28,000 antibody sequences and tested 481 antibodies for binding activity and 125 antibodies for antimalaria activity in vivo. Through these analyses we identified correlations suggesting that sequences in Plasmodium falciparum circumsporozoite protein, the target antigen in RTS,S/AS01, may induce immunodominant antibody responses that limit more protective, but subdominant, responses. Using binding studies, mouse malaria models, biomanufacturing assessments and protein stability assays, we selected AB-000224 and AB-007088 for advancement as a clinical lead and backup. We engineered the variable domains (Fv) of both antibodies to enable low-cost manufacturing at scale for distribution to pediatric populations, in alignment with WHO's preferred product guidelines. The engineered clone with the optimal manufacturing and drug property profile, MAM01, was advanced into clinical development.


Asunto(s)
Anticuerpos Monoclonales , Malaria , Animales , Preescolar , Humanos , Lactante , Ratones , Anticuerpos Monoclonales/uso terapéutico , Linfocitos B , Malaria/prevención & control , Vacunas contra la Malaria
3.
Front Immunol ; 14: 1303446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152401

RESUMEN

Introduction: Pre-erythrocytic malaria vaccines hold the promise of inducing sterile protection thereby preventing the morbidity and mortality associated with Plasmodium infection. The main surface antigen of P. falciparum sporozoites, i.e., the circumsporozoite protein (CSP), has been extensively explored as a target of such vaccines with significant success in recent years. Systematic adjuvant selection, refinements of the immunization regimen, and physical properties of the antigen may all contribute to the potential of increasing the efficacy of CSP-based vaccines. Protection appears to be dependent in large part on CSP antibodies. However due to a knowledge gap related to the exact correlates of immunity, there is a critical need to improve our ability to down select candidates preclinically before entering clinical trials including with controlled human malaria infections (CHMI). Methods: We developed a novel multiplex competition assay based on well-characterized monoclonal antibodies (mAbs) that target crucial epitopes across the CSP molecule. This new tool assesses both, quality and epitope-specific concentrations of vaccine-induced antibodies by measuring their equivalency with a panel of well-characterized, CSP-epitope-specific mAbs. Results: Applying this method to RTS,S-immune sera from a CHMI trial demonstrated a quantitative epitope-specificity profile of antibody responses that can differentiate between protected vs. nonprotected individuals. Aligning vaccine efficacy with quantitation of the epitope fine specificity results of this equivalency assay reveals the importance of epitope specificity. Discussion: The newly developed serological equivalence assay will inform future vaccine design and possibly even adjuvant selection. This methodology can be adapted to other antigens and disease models, when a panel of relevant mAbs exists, and could offer a unique tool for comparing and down-selecting vaccine formulations.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Anticuerpos Antiprotozoarios , Malaria/prevención & control , Malaria Falciparum/prevención & control , Anticuerpos Monoclonales , Adyuvantes Inmunológicos , Epítopos
4.
Mil Med ; 188(5-6): e1335-e1337, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34557926

RESUMEN

We report a case of febrile Plasmodium falciparum malaria in a 36-year-old male patient occurring 14 years after immigration from and more than 12 months since a return visit to the endemic area. The critical need for awareness regarding late presentations of P. falciparum is discussed.


Asunto(s)
COVID-19 , Malaria Falciparum , Masculino , Humanos , Adulto , Plasmodium falciparum , Malaria Falciparum/complicaciones , Viaje , Emigración e Inmigración
5.
Vaccine ; 40(40): 5781-5790, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36055874

RESUMEN

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Adyuvantes Inmunológicos/efectos adversos , Adulto , Anticuerpos Antiprotozoarios , Humanos , Malaria Falciparum/prevención & control , Plasmodium falciparum , Proteínas Protozoarias
6.
J Clin Med ; 11(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35407447

RESUMEN

Reliably assessing exposure to mosquitoes carrying malaria parasites continues to be a challenge due to the lack of reliable, highly sensitive diagnostics with high-throughput potential. Here, we describe an approach that meets these requirements by simultaneously measuring immune responses to both disease vector and pathogen, using an electro-chemiluminescence-based multiplex assay platform. While using the same logistical steps as a classic ELISA, this platform allows for the multiplexing of up to ten antigens in a single well. This simple, reproducible, quantitative readout reports the magnitude, incidence, and prevalence of malaria infections in residents of malaria-endemic areas. By reporting exposure to both insect vectors and pathogen, the approach also provides insights into the efficacy of drugs and/or other countermeasures deployed against insect vectors aimed at reducing or eliminating arthropod-borne diseases. The high throughput of the assay enables the quick and efficient screening of sera from individuals for exposure to Plasmodium even if they are taking drug prophylaxis. We applied this assay to samples collected from controlled malaria infection studies, as well as those collected in field studies in malaria-endemic regions in Uganda and Kenya. The assay was sensitive to vector exposure, malaria infection, and endemicity, demonstrating its potential for use in malaria serosurveillance.

7.
PLoS Pathog ; 18(3): e1010409, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35344575

RESUMEN

Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved ß-sheet face of the ctCSP (denoted ß-ctCSP). Antibodies to the ß-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the ß-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Animales , Anticuerpos Antiprotozoarios , Epítopos , Humanos , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum , Proteínas Protozoarias/genética
8.
Vaccine ; 40(12): 1864-1871, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35153091

RESUMEN

BACKGROUND: The potential use of Bacillus anthracis as a bioterrorism weapon requires a safe and effective vaccine that can be immediately distributed for mass vaccination. Protective antigen (PA), a principal component of virulence factors edema toxin and lethal toxin of B. anthracis, has been the topic of extensive research. Previously, full-length PA (PA83) was manufactured using a transient plant-based expression system. Immunization with this PA83 antigen formulated with Alhydrogel® adjuvant elicited strong neutralizing immune responses in mice and rabbits and protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. This Phase 1 study evaluates this vaccine's safety and immunogenicity in healthy human volunteers. METHODS: This first-in-human, single-blind, Phase 1 study was performed at a single center to investigate the safety, reactogenicity, and immunogenicity of the plant-derived PA83-FhCMB vaccine at four escalating dose levels (12.5, 25, 50 or 100 µg) with Alhydrogel® in healthy adults 18-49 years of age (inclusive). Recipients received three doses of vaccine intramuscularly at 28-day intervals. Safety was evaluated on days 3, 7, and 14 following vaccination. Immunogenicity was assessed using an enzyme-linked immunosorbent assay (ELISA) and a toxin neutralizing antibody (TNA) assay on days 0, 14, 28, 56, 84, and 180. RESULTS: All four-dose ranges were safe and immunogenic, with no related serious adverse events observed. Peak ELISA Geometric Mean Concentration (GMC) and TNA ED50 Geometric Mean Titer (GMT) were noted at Day 84, 1 month after the final dose, with the most robust response detected in the highest dose group. Antibody responses decreased by Day 180 across all dose groups. Long-term immunogenicity data beyond six months was not collected. CONCLUSIONS: This is the first study demonstrating a plant-derived subunit anthrax vaccine's safety and immunogenicity in healthy adults. The results support further clinical investigation of the PA83-FhCMB vaccine. ClinicalTrials.gov identifier. NCT02239172.


Asunto(s)
Vacunas contra el Carbunco , Carbunco , Bacillus anthracis , Adulto , Carbunco/prevención & control , Anticuerpos Antibacterianos , Antígenos Bacterianos , Antígenos de Plantas , Humanos , Inmunogenicidad Vacunal , Método Simple Ciego
9.
NPJ Vaccines ; 7(1): 13, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087099

RESUMEN

The Circumsporozoite Protein (CSP) of Plasmodium falciparum contains an N-terminal region, a conserved Region I (RI), a junctional region, 25-42 copies of major (NPNA) and minor repeats followed by a C-terminal domain. The recently approved malaria vaccine, RTS,S/AS01 contains NPNAx19 and the C-terminal region of CSP. The efficacy of RTS,S against natural infection is low and short-lived, and mapping epitopes of inhibitory monoclonal antibodies may allow for rational improvement of CSP vaccines. Tobacco Mosaic Virus (TMV) was used here to display the junctional epitope (mAb CIS43), Region I (mAb 5D5), NPNAx5, and NPNAx20 epitope of CSP (mAbs 317 and 580). Protection studies in mice revealed that Region I did not elicit protective antibodies, and polyclonal antibodies against the junctional epitope showed equivalent protection to NPNAx5. Combining the junctional and NPNAx5 epitopes reduced immunogenicity and efficacy, and increasing the repeat valency to NPNAx20 did not improve upon NPNAx5. TMV was confirmed as a versatile vaccine platform for displaying small epitopes defined by neutralizing mAbs. We show that polyclonal antibodies against engineered VLPs can recapitulate the binding specificity of the mAbs and immune-focusing by reducing the structural complexity of an epitope may be superior to immune-broadening as a vaccine design approach. Most importantly the junctional and restricted valency NPNA epitopes can be the basis for developing highly effective second-generation malaria vaccine candidates.

10.
Vaccines (Basel) ; 11(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36679887

RESUMEN

The emergence of novel potentially pandemic pathogens necessitates the rapid manufacture and deployment of effective, stable, and locally manufacturable vaccines on a global scale. In this study, the ability of the Escherichia coli expression system to produce the receptor binding domain (RBD) of the SARS-CoV-2 spike protein was evaluated. The RBD of the original Wuhan-Hu1 variant and of the Alpha and Beta variants of concern (VoC) were expressed in E. coli, and their biochemical and immunological profiles were compared to RBD produced in mammalian cells. The E. coli-produced RBD variants recapitulated the structural character of mammalian-expressed RBD and bound to human angiotensin converting enzyme (ACE2) receptor and a panel of neutralizing SARS-CoV-2 monoclonal antibodies. A pilot vaccination in mice with bacterial RBDs formulated with a novel liposomal adjuvant, Army Liposomal Formulation containing QS21 (ALFQ), induced polyclonal antibodies that inhibited RBD association to ACE2 in vitro and potently neutralized homologous and heterologous SARS-CoV-2 pseudoviruses. Although all vaccines induced neutralization of the non-vaccine Delta variant, only the Beta RBD vaccine produced in E. coli and mammalian cells effectively neutralized the Omicron BA.1 pseudovirus. These outcomes warrant further exploration of E. coli as an expression platform for non-glycosylated, soluble immunogens for future rapid response to emerging pandemic pathogens.

11.
Vaccine ; 39(43): 6398-6406, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34593270

RESUMEN

BACKGROUND: We previously demonstrated that RTS,S/AS01B and RTS,S/AS01E vaccination regimens including at least one delayed fractional dose can protect against Plasmodium falciparum malaria in a controlled human malaria infection (CHMI) model, and showed inferiority of a two-dose versus three-dose regimen. In this follow-on trial, we evaluated whether fractional booster vaccination extended or induced protection in previously protected (P-Fx) or non-protected (NP-Fx) participants. METHODS: 49 participants (P-Fx: 25; NP-Fx: 24) received a fractional (1/5th dose-volume) RTS,S/AS01E booster 12 months post-primary regimen. They underwent P. falciparum CHMI three weeks later and were then followed for six months for safety and immunogenicity. RESULTS: Overall vaccine efficacy against re-challenge was 53% (95% CI: 37-65%), and similar for P-Fx (52% [95% CI: 28-68%]) and NP-Fx (54% [95% CI: 29-70%]). Efficacy appeared unaffected by primary regimen or previous protection status. Anti-CS (repeat region) antibody geometric mean concentrations (GMCs) increased post-booster vaccination. GMCs were maintained over time in primary three-dose groups but declined in the two-dose group. Protection after re-challenge was associated with higher anti-CS antibody responses. The booster was well-tolerated. CONCLUSIONS: A fractional RTS,S/AS01E booster given one year after completion of a primary two- or three-dose RTS,S/AS01 delayed fractional dose regimen can extend or induce protection against CHMI. CLINICAL TRIAL REGISTRATION: NCT03824236. linked to this article can be found on the Research Data as well as Figshare https://figshare.com/s/ee025150f9d1ac739361.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Anticuerpos Antiprotozoarios , Humanos , Malaria Falciparum/prevención & control , Plasmodium falciparum , Vacunación
12.
Front Big Data ; 4: 672460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34212134

RESUMEN

RTS,S/AS01 (GSK) is the world's first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit-with this dataset-in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a "quality as well as quantity" hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.

13.
PLoS One ; 16(6): e0252628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34081747

RESUMEN

Serological assessment of SARS-CoV-2 specific responses are an essential tool for determining the prevalence of past SARS-CoV-2 infections in the population especially when testing occurs after symptoms have developed and limited contact tracing is in place. The goal of our study was to test a new 10-plex electro-chemiluminescence-based assay to measure IgM and IgG responses to the spike proteins from multiple human coronaviruses including SARS-CoV-2, assess the epitope specificity of the SARS-CoV-2 antibody response against full-length spike protein, receptor-binding domain and N-terminal domain of the spike protein, and the nucleocapsid protein. We carried out the assay on samples collected from three sample groups: subjects diagnosed with COVID-19 from the U.S. Army hospital at Camp Humphreys in Pyeongtaek, South Korea; healthcare administrators from the same hospital but with no reported diagnosis of COVID-19; and pre-pandemic samples. We found that the new CoV-specific multiplex assay was highly sensitive allowing plasma samples to be diluted 1:30,000 with a robust signal. The reactivity of IgG responses to SARS-CoV-2 nucleocapsid protein and IgM responses to SARS-CoV-2 spike protein could distinguish COVID-19 samples from non-COVID-19 and pre-pandemic samples. The data from the three sample groups also revealed a unique pattern of cross-reactivity between SARS-CoV-2 and SARS-CoV-1, MERS-CoV, and seasonal coronaviruses HKU1 and OC43. Our findings show that the CoV-2 IgM response is highly specific while the CoV-2 IgG response is more cross-reactive across a range of human CoVs and also showed that IgM and IgG responses show distinct patterns of epitope specificity. In summary, this multiplex assay was able to distinguish samples by COVID-19 status and characterize distinct trends in terms of cross-reactivity and fine-specificity in antibody responses, underscoring its potential value in diagnostic or serosurveillance efforts.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/análisis , Formación de Anticuerpos , Reacciones Cruzadas , Femenino , Humanos , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Inmunoglobulina M/análisis , Inmunoglobulina M/inmunología , Luminiscencia , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Personal Militar , Proteínas de la Nucleocápside/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/patogenicidad , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Estados Unidos
14.
J Infect Dis ; 222(10): 1681-1691, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32687161

RESUMEN

BACKGROUND: A previous RTS,S/AS01B vaccine challenge trial demonstrated that a 3-dose (0-1-7-month) regimen with a fractional third dose can produce high vaccine efficacy (VE) in adults challenged 3 weeks after vaccination. This study explored the VE of different delayed fractional dose regimens of adult and pediatric RTS,S/AS01 formulations. METHODS: A total of 130 participants were randomized into 5 groups. Four groups received 3 doses of RTS,S/AS01B or RTS,S/AS01E on a 0-1-7-month schedule, with the final 1 or 2 doses being fractional (one-fifth dose volume). One group received 1 full (month 0) and 1 fractional (month 7) dose of RTS,S/AS01E. Immunized and unvaccinated control participants underwent Plasmodium falciparum-infected mosquito challenge (controlled human malaria infection) 3 months after immunization, a timing chosen to potentially discriminate VEs between groups. RESULTS: The VE of 3-dose formulations ranged from 55% (95% confidence interval, 27%-72%) to 76% (48%-89%). Groups administered equivalent formulations of RTS,S/AS01E and RTS,S/AS01B demonstrated comparable VE. The 2-dose group demonstrated lower VE (29% [95% confidence interval, 6%-46%]). All regimens were well tolerated and immunogenic, with trends toward higher anti-circumsporozoite antibody titers in participants protected against infection. CONCLUSIONS: RTS,S/AS01E can provide VE comparable to an equivalent RTS,S/AS01B regimen in adults, suggesting a universal formulation may be considered. Results also suggest that the 2-dose regimen is inferior to the 3-dose regimens evaluated. CLINICAL TRIAL REGISTRATION: NCT03162614.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Malaria/prevención & control , Adolescente , Adulto , Femenino , Humanos , Esquemas de Inmunización , Control de Infecciones , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Masculino , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Vacunación , Adulto Joven
15.
Front Immunol ; 11: 669, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411130

RESUMEN

The RTS,S/AS01 vaccine provides partial protection against Plasmodium falciparum infection but determinants of protection and/or disease are unclear. Previously, anti-circumsporozoite protein (CSP) antibody titers and blood RNA signatures were associated with RTS,S/AS01 efficacy against controlled human malaria infection (CHMI). By analyzing host blood transcriptomes from five RTS,S vaccination CHMI studies, we demonstrate that the transcript ratio MX2/GPR183, measured 1 day after third immunization, discriminates protected from non-protected individuals. This ratiometric signature provides information that is complementary to anti-CSP titer levels for identifying RTS,S/AS01 immunized people who developed protective immunity and suggests a role for interferon and oxysterol signaling in the RTS,S mode of action.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/genética , Malaria Falciparum/prevención & control , Proteínas de Resistencia a Mixovirus/genética , Plasmodium falciparum/inmunología , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Vacunación , Vacunas Sintéticas/inmunología , Anticuerpos Antiprotozoarios/inmunología , Estudios de Cohortes , Humanos , Inmunogenicidad Vacunal/genética , Control de Infecciones/métodos , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Proteínas Protozoarias/inmunología , RNA-Seq , Análisis de la Célula Individual
16.
J Immunol Methods ; 468: 29-34, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30910536

RESUMEN

Immunoglobulin M (IgM) is the first antibody induced after the onset of an adaptive immune response against a pathogen or vaccine. Serological assays play a central role in evaluating these adaptive immunological responses. Such assays are not only crucial for the assessment of vaccine immunogenicity, but also inform on exposure to pathogens and cross-reactivity with other viruses. To date, there is no ELISA-based assay available that measures IgM responses against Zaire Ebola virus (ZEBOV). To address this critical need, our laboratory has developed a novel immunoassay capable of detecting total IgM against ZEBOV glycoprotein in serum samples from individuals exposed to the antigen through infection or vaccination. Here, we describe a sensitive, high-throughput, and inexpensive assay that can be performed in any laboratory. The performance criteria of the newly developed ZEBOV glycoprotein-based IgM ELISA were assessed using antisera collected from human patients immunized with the rVSVΔG-ZEBOV-GP vaccine being tested in a phase 1 clinical trial. This assay demonstrates high specificity and sensitivity and will also be a valuable tool in the mission to find immune correlates of protection for a successful Ebola vaccine.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/inmunología , Ensayo de Inmunoadsorción Enzimática , Fiebre Hemorrágica Ebola/prevención & control , Inmunogenicidad Vacunal , Inmunoglobulina M/sangre , Pruebas Serológicas , Biomarcadores/sangre , Ensayos Clínicos Fase I como Asunto , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunización , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Tiempo , Resultado del Tratamiento
17.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30559218

RESUMEN

Seroepidemiological studies on the prevalence of antibodies to malaria antigens are primarily conducted on individuals from regions of endemicity. It is therefore difficult to accurately correlate the antibody responses to the timing and number of prior malaria infections. This study was undertaken to assess the evolution of antibodies to the dominant surface antigens of Plasmodium vivax and P. falciparum following controlled human malaria infection (CHMI) in malaria-naive individuals. Serum samples from malaria-naive adults, collected before and after CHMI with either P. vivax (n = 18) or P. falciparum (n = 18), were tested for the presence of antibodies to the circumsporozoite protein (CSP) and the 42-kDa fragment of merozoite surface protein 1 (MSP-142) of P. vivax and P. falciparum using an enzyme-linked immunosorbent assay (ELISA). Approximately 1 month following CHMI with either P. vivax or P. falciparum, >60% of subjects seroconverted to homologous CSP and MSP-1. More than 50% of the subjects demonstrated reactivity to heterologous CSP and MSP-142, and a similar proportion of subjects remained seropositive to homologous MSP-142 >5 months after CHMI. Computational analysis provides insight into the presence of cross-reactive responses. The presence of long-lived and heterologous reactivity and its functional significance, if any, need to be taken into account while evaluating malaria exposure in field settings.


Asunto(s)
Antígenos de Protozoos/inmunología , Eritrocitos/parasitología , Malaria Falciparum/inmunología , Malaria Vivax/inmunología , Plasmodium falciparum , Plasmodium vivax , Adolescente , Adulto , Animales , Anopheles/parasitología , Epítopos de Linfocito B , Femenino , Humanos , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Mosquitos Vectores/parasitología , Proteínas Protozoarias/inmunología , Adulto Joven
18.
Sci Rep ; 7(1): 7998, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28801554

RESUMEN

A recent study of the RTS,S malaria vaccine, which is based on the circumsporozoite protein (CSP), demonstrated an increase in efficacy from 50-60% to 80% when using a delayed fractional dose regimen, in which the standard 0-1-2 month immunization schedule was modified to a 0-1-7 month schedule and the third immunization was delivered at 20% of the full dose. Given the role that antibodies can play in RTS,S-induced protection, we sought to determine how the modified regimen alters IgG subclasses and serum opsonophagocytic activity (OPA). Previously, we showed that lower CSP-mediated OPA was associated with protection in an RTS,S study. Here we report that the delayed fractional dose regimen resulted in decreased CSP-mediated OPA and an enhanced CSP-specific IgG4 response. Linear regression modeling predicted that CSP-specific IgG1 promote OPA, and that CSP-specific IgG4 interferes with OPA, which we subsequently confirmed by IgG subclass depletion. Although the role of IgG4 antibodies and OPA in protection is still unclear, our findings, combined with previous results that the delayed fractional dose increases CSP-specific antibody avidity and somatic hypermutation frequency in CSP-specific B cells, demonstrate how changes in vaccine regimen alone can significantly alter the quality of antibody responses to improve vaccine efficacy.


Asunto(s)
Inmunoglobulina G/inmunología , Vacunas contra la Malaria/administración & dosificación , Fagocitosis , Vacunas Sintéticas/administración & dosificación , Adolescente , Adulto , Anticuerpos Antiprotozoarios/inmunología , Afinidad de Anticuerpos , Femenino , Humanos , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Masculino , Persona de Mediana Edad , Proteínas Opsoninas/inmunología , Proteínas Protozoarias/inmunología , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología
19.
JCI Insight ; 2(1): e89154, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28097230

RESUMEN

BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 105 PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 105 PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [-35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine was well tolerated, safe, and easy to administer. No antibody or T cell responses correlated with protection. CONCLUSIONS: We have demonstrated for the first time to our knowledge that PfSPZ Vaccine can protect against a 3-week heterologous CHMI in a limited group of malaria-naive adult subjects. A 3-dose regimen protected against both 3-week and 24-week homologous CHMI (87% and 57%, respectively) in this population. These results provide a foundation for developing an optimized immunization regimen for preventing malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT02215707. FUNDING: Support was provided through the US Army Medical Research and Development Command, Military Infectious Diseases Research Program, and the Naval Medical Research Center's Advanced Medical Development Program.


Asunto(s)
Malaria Falciparum/terapia , Plasmodium falciparum/efectos de los fármacos , Esporozoítos/efectos de los fármacos , Vacunas Atenuadas/administración & dosificación , Administración Intravenosa , Adulto , Femenino , Humanos , Malaria Falciparum/prevención & control , Masculino , Plasmodium falciparum/genética , Esporozoítos/genética , Linfocitos T/inmunología , Vacunas Atenuadas/uso terapéutico , Secuenciación Completa del Genoma/métodos
20.
N Engl J Med ; 376(4): 330-341, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-25830322

RESUMEN

BACKGROUND: The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. METHODS: We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. RESULTS: The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. CONCLUSIONS: This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV∆G-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408 .).


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Adulto , Anticuerpos Antivirales/sangre , Método Doble Ciego , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/efectos adversos , Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Masculino , Persona de Mediana Edad , Proteínas Recombinantes , Seroconversión , Vacunas Atenuadas/inmunología , Virus de la Estomatitis Vesicular Indiana , Proteínas del Envoltorio Viral/aislamiento & purificación , Viremia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...