Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS One ; 19(3): e0300444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547253

RESUMEN

This paper presents a novel sound event detection (SED) system for rare events occurring in an open environment. Wavelet multiresolution analysis (MRA) is used to decompose the input audio clip of 30 seconds into five levels. Wavelet denoising is then applied on the third and fifth levels of MRA to filter out the background. Significant transitions, which may represent the onset of a rare event, are then estimated in these two levels by combining the peak-finding algorithm with the K-medoids clustering algorithm. The small portions of one-second duration, called 'chunks' are cropped from the input audio signal corresponding to the estimated locations of the significant transitions. Features from these chunks are extracted by the wavelet scattering network (WSN) and are given as input to a support vector machine (SVM) classifier, which classifies them. The proposed SED framework produces an error rate comparable to the SED systems based on convolutional neural network (CNN) architecture. Also, the proposed algorithm is computationally efficient and lightweight as compared to deep learning models, as it has no learnable parameter. It requires only a single epoch of training, which is 5, 10, 200, and 600 times lesser than the models based on CNNs and deep neural networks (DNNs), CNN with long short-term memory (LSTM) network, convolutional recurrent neural network (CRNN), and CNN respectively. The proposed model neither requires concatenation with previous frames for anomaly detection nor any additional training data creation needed for other comparative deep learning models. It needs to check almost 360 times fewer chunks for the presence of rare events than the other baseline systems used for comparison in this paper. All these characteristics make the proposed system suitable for real-time applications on resource-limited devices.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Análisis de Ondículas , Memoria , Máquina de Vectores de Soporte
2.
EClinicalMedicine ; 70: 102542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525407

RESUMEN

Background: The multifactorial nature of inflammatory bowel disease (IBD), which manifests differently in individuals creates a need for a better understanding of the behaviour and pattern of the disease due to environmental factors. The current study aimed to study the changes in IBD behaviour, presentation, and characteristics in patients over the past two decades with a goal of improving patients' diagnosis, management and outcomes. Methods: During a 6-month period (1/02/2022-30/07/2022), the information of patients with IBD who attended IBD outpatient clinics of 11 referral centre's in six countries was collected, and based on the first time of diagnosis with IBD, they were allocated as group A (those who were diagnosed more than 15 years ago), group B (those who were diagnosed with IBD between 5 and 15 years ago) and group C (IBD cases who diagnosed in recent 5 years). Then the most prevalent subtypes and characters of the disease are evaluated and compared to make clear if the presenting pattern and behaviour of the disease has changed in the last 2 decades. Findings: Overall 1430 patients with IBD including 1207 patients with ulcerative colitis (UC) (84.5%) and 205 patients with Crohn's disease (CD; 14.3%) included. Mean age of participants at the first time of diagnosis with IBD was 30 years. The extra-intestinal involvement of IBD in groups A and B was more prevalent in comparison with group C. Most of those in groups A & B had academic education but in group C, the most prevalent educational status was high school or diploma (P = 0.012). In contrast to groups A and B, the relative prevalence of medium socioeconomic level in group C had decreased (65%). Relative prevalence of UC subtypes was similar among groups A and B (extensive colitis as most prevalent) but in group C, the most prevalent subtype is left side colitis (38.17%). The most prevalent subtype of CD in groups A and B was ileocolic involvement while in group C, upper GI involvement is significantly increased. The rate of food sensitivity among groups A and B was more than group C (P = 0.00001). The relative prevalence of patients with no flare has increased with a steady slope (P < 0.00001). Relative prevalence of presenting symptoms among patients with UC in group C differs and nowadays the rate abdominal pain (70.7%) and bloating (43.9%) have increased and frequency of diarrhoea (67.4%) has decreased. Interpretation: In the recent 5 years, the pattern of UC presentation has changed. The rate of upper GI involvement in CD and relative prevalence of patients with no disease flare increased and the rate of extra intestinal involvement decreased. Funding: None.

4.
Pathogens ; 12(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003804

RESUMEN

Lactobacillus rhamnosus (LBS) is a well-documented probiotic strain in oncology and has a pivotal role in clinical applications. Here, we have investigated the protective effect of Lactobacillus rhamnosus on intestinal mucositis induced by cisplatin (CP) and explored the underlying mechanisms targeting inflammatory proteins, as well as the histological changes in the intestinal tissue of mice, in addition, the bacterial strains that may be related to the health-enhancing properties. BALB/c mice were pre-treated with or without LBS via oral gavage, followed by mucositis induction with cisplatin. Our results revealed that the LBS-treated groups significantly attenuated proinflammatory cytokine levels (IL-1ß, IL-6, and TNF-α) compared to the CP group. Furthermore, LBS mitigated the damaged tight junction integrity caused by CP via up-regulating the levels of claudin, occludin, ZO-1, and mucin-2 protein (MUC-2). Finally, the 16S rRNA fecal microbiome genomic analysis showed that LBS administration enhanced the growth of beneficial bacteria, i.e., Firmicutes and Lachnospiraceae, while the relative abundance of the opportunistic bacteria Bacteroides and Proteobacteria decreased. Collectively, LBS was found to beneficially modulate microbial composition structure and functions and enrich the ecological diversity in the gut.

5.
Molecules ; 28(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836692

RESUMEN

Inflammatory bowel disease (IBD) is a persistent, lifelong inflammation of the digestive system. Dextran sulfate sodium is commonly used to induce colitis in experimental animal models, which causes epithelial damage, intestinal inflammation, mucin depletion, and dysbiosis of the gut microbiota. Various prebiotics, polysaccharides, and polypeptides are used for IBD treatment. In this study, we used a murine model utilizing BALB/c mice, with 10 mice per group, to investigate the treatment effect of sea conch peptide hydrolysate (CPH) on DSS-induced colitis mice. Colitis was induced through the administration of 2.5% DSS in drinking water over a seven-days period. Furthermore, on the eighth day of the experiment, sea conch peptide hydrolysate (CPH) at low (100 mg/kg), medium (200 mg/kg), and high (400 mg/kg) doses, which were continued for 14 days, were assessed for medicinal purposes in DSS-induced colitis mice. Our results showed that CPH treatment significantly alleviated the severity and symptoms of colitis. The epithelial integrity and histological damage were improved. Intestinal inflammation and inflammatory cell infiltration were improved. Furthermore, the expression of pro-inflammatory cytokines was reduced, and intestinal barrier integrity was restored by elevating the tight junction proteins. Moreover, 16s RNA sequencing revealed dysbiosis of the gut microbiota was observed upon DSS treatment, which was reinstated after CPH treatment. An increased level of Firmicutes and Lactobacillus was observed in the treatment groups. Finally, our results suggest that CPH would be recommended as a functional food source and also have the potential to be used as a medicinal product for different gastrointestinal disorders.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Disbiosis/inducido químicamente , Disbiosis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Citocinas/metabolismo , Inflamación/patología , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon/metabolismo
6.
Gut Pathog ; 15(1): 2, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624474

RESUMEN

Paediatric pneumonia is a respiratory infection that affects infants and young children under the age of 3. This disease is the leading cause of infant and child mortality in developing countries because of the weak immune system of young children. The difficulty and length of time required to identify the pathogen and causative agent are the main reasons for this high mortality rate. In addition, the identification of certain causative agents is particularly important for the treatment of paediatric pneumonia. In this study, we explored the possible mechanisms by which pathogenic Enterococcus faecalis induced pneumonia in vivo. The potential virulence factors of bacteria isolated from the intestines of paediatric pneumonia patients were determined. Taken together, the results suggested that lysophosphatidic acid (LTA) from pathogenic E. faecalis decreases the expression of platelet-activating factor receptor (PAFR), which in turn disrupts the function of intestinal tight junctions (Occ and Ccldn1), leading to the entry of LE-LTA into the bloodstream because of the disruption of the intestinal barrier. Although LTA can enter circulation, it cannot directly infiltrate the lungs, which indicates that lung inflammation in mice is not caused by the direct entry of LE-LTA into the lungs. We further found that LTA activates immune cells, such as CD8 + T cells and type 2 innate lymphocytes, in vivo. Interleukin-6 and interleukin-17 can produce large amounts of inflammatory factors and thus promote the development of pneumonia. In conclusion, our findings demonstrate that the LTA of pathogenic E. faecalis in the intestine is a virulence factor that can cause paediatric pneumonia. This study found that intestinal bacterial virulence factors can induce immune responses in the lungs and blood. These findings could provide further insight into the mechanism of infectious diseases in the lung that are caused by bacteria in the intestine.

7.
ACS Omega ; 8(33): 29949-29958, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38174107

RESUMEN

Developing high-performance biocathodes remain one of the most challenging aspects of the microbial electrosynthesis (MES) system and the primary factor limiting its output. Herein, a hollow porous carbon (PC) fabricated with MXenes coated over an electrode was developed for MES systems to facilitate the direct delivery of CO2 to microorganisms colonized. The result highlighted that MXene@PC (Ti3C2Tx@PC) has a surface area of 434 m2/g. The Ti3C2Tx@PC MES cycle shows that in cycle 4 and cycle 5, the values are -309.2 and -352.3. Cyclic voltammetry showed that the coated electrode current response (mA) increased from -4.5 to -20.2. The substantial redox peaks of Ti3C2Tx@PC biofilms are displayed at -741, -516, and -427 mV vs Ag/AgCl, suggesting an enhanced electron transfer owing to the Ti3C2Tx@PC complex coating. Additionally, more active sites enhanced mass transfer and microbial development, resulting in a 46% rise in butyrate compared to the uncoated control. These findings demonstrate the value of PC modification as a method for MES-based product selection.

8.
ACS Omega ; 7(50): 46325-46336, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570280

RESUMEN

In this study, cadmium sulfide (CdS) quantum dots (QDs) and barium (Ba) (3 and 6 wt %)-doped CdS QDs were synthesized via a hydrothermal technique. The basic purpose of this work is to degrade methylene blue (MB) dye and evaluate density functional theory (DFT). The synthesized samples were characterized through X-ray powder diffraction (XRD), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-vis spectrophotometer, PL, and density functional theory (DFT). The XRD (structural analysis) confirmed that the hexagonal crystal structure and crystallinity increased upon doping. Selected area electron diffraction (SAED) analysis confirmed the polycrystalline nature of the prepared QDs. The functional groups have been investigated using FTIR analysis. The surface and structural morphologies of the synthesized specimen have been investigated by applying TEM and FE-SEM, and it was found to exhibit the topology of QDs. In addition, optical characteristics have been investigated via UV-vis absorption spectroscopy, which exhibited a bathochromic shift (red shift) as a consequence of the reduction of the band-gap energy upon doping from 2.56 to 2.38 eV. PL analysis was used to observe the electron-hole recombination rate. Moreover, the electronic and optical properties of Ba-doped CdS were further explored using density functional theory. Pristine and Ba-doped QDs exhibit sufficient catalytic activity (CA) against the MB dye in all media as 62.59, 70.15, and 72.74% in neutral, basic, and acidic solutions, respectively.

9.
Front Nutr ; 9: 984695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276816

RESUMEN

Type 2 diabetes mellitus (T2DM) is a health issue that causes serious worldwide economic problems. It has previously been reported that natural polysaccharides have been studied with regard to regulating the gut microbiota, which plays an important role in T2DM. Here, we investigate the effects of Morchella esculenta polysaccharide (MEP) on a high-fat diet (HFD) and streptozotocin (STZ)-induced T2DM in BALB/c mice. The administration of MEP effectively regulated hyperglycemia and hyperlipidemia and improved insulin sensitivity. We also determined an improvement in gut microbiota composition by 16sRNA pyrosequencing. Treatment with MEP showed an increase in beneficial bacteria, i.e., Lactobacillus and Firmicutes, while the proportion of the opportunistic bacteria Actinobacteria, Corynebacterium, and Facklamia decreased. Furthermore, the treatment of T2DM mice with MEP resulted in reduced endotoxemia and insulin resistance-related pro-inflammatory cytokines interleukin 1ß (IL-1ß), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Moreover, MEP treatment improved intestinal permeability by modulating the expression of the colon tight-junction proteins zonula occludens-1 (ZO-1), occludin, claudin-1, and mucin-2 protein (MUC2). Additionally, MEP administration affects the metagenome of microbial communities in T2DM mice by altering the functional metabolic pathways. All these findings suggested that MEP is a beneficial prebiotic associated with ameliorating the gut microbiota and its metabolites in T2DM.

10.
AMB Express ; 12(1): 114, 2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36056976

RESUMEN

Edible mushrooms have now been suggested as promising sources of biological functional ingredients and are the subject of the most recent nutrition research and novel functional foods. Polysaccharides from mushrooms exhibit impressive biological effects, notably against obesity. Obesity is a chronic metabolic disorder characterized by chronic inflammation, gut dysbiosis, and hyperpermeability of the colon. Here, we prove that mushrooms Morchella esculenta polysaccharide (MEP) effects on HFD-induced obesity, colonic inflammation, and gut microbiota dysbiosis. Our findings demonstrate MEP supplementation attenuates obesity parameters and reduces inflammation in the colon via regulation of Toll-like receptor 4 (TLR4), nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and inactivation of nuclear factor kappa B (NF-κB). Furthermore, MEP administration restores gut microbiota dysregulation by ameliorating Firmicutes to Bacteroidetes proportion as well as enhancing beneficial bacteria, like Lactobacillus, and inhibiting pathogenic bacteria like Enterococcus. MEP improves gut integrity by increasing tight junction proteins (TJs) and reducing endotoxin levels by controlling Lipopolysaccharide (LPS) in HFD-induced obese mice. These results demonstrated the therapeutic efficacy of MEP in attenuating HFD-induced obesity via regulating inflammatory cascades, ameliorating the gut microbiome, and modulating gut integrity.

11.
Gut Pathog ; 14(1): 39, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115959

RESUMEN

Type-1 Diabetes Mellitus (T1DM) is regarded as a multifunctional, immune-related disease which causes massive destruction of islet ß-cells in pancreas resulting in hyperglycemic, hypoinsulinemia and hyperlipidimic conditions. The aim of the present study, was to investigate the hypothesis that streptozotocin (STZ)-induced T1DM in Balb/c mice when treated with crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) depicts improvement in diabetes-related symptoms. Treatment with CDDP resulted in decreased body weight loss, improved food consumption and water intake disbalances. The CDDP effectively improved fasting blood glucose, oral glucose tolerance (OGTT), serum insulin, insulin secretion, rejuvenation of ß-cells mass, serum lipid profile and pro-inflammatory cytokines levels. Additionally, treatment with CDDP increased the population of beneficial bacteria such as Firmicutes, Bacteroidetes and Lactobacillus at phylum, family and genus levels by 16S rRNA sequencing. Furthermore, immunohistological examination confirmed that CDDP reduces the inflammation and restored the structural morphology of colon and upraised the levels of insulin receptor substrate-1 (IRS-1), Mucin-2 (MUC-2) and tight-junction proteins (TJs) whereby maintaining the gut structures and barrier permeability. Thus, the above presented data, highlights the safe and therapeutic effects of crude polysaccharide (CDDP) from D. divaricata in the treatment and restoration of T1DM disorders and can be used as a food supplement alternative to diabetes medicine.

12.
Materials (Basel) ; 15(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35888399

RESUMEN

Electric discharge machining with a powder mix dielectric is a promising technique to harden a work piece's surface using electricity with a high energy density. The quality of the electrical discharge-machined surface is related to its surface integrity in which the surface's roughness, residual stresses, micro hardness and surface micro cracks are some of the major factors. In this research, graphite powder was mixed in a dielectric with a particle size of 20 µm, 30 µm, and 40 µm, with the concentration of the graphite powder ranging from 2 g/L to 4 g/L. Moreover, the peak current and pulse time on were also coupled with an additive of graphite powder to investigate the effect on the surface quality, i.e., the recast layer thickness, micro hardness and crater depth as well as the material removal rate (MRR) and tool wear rate (TWR). A Box-Behnken design was employed to design the experiments and the experimental results revealed that the graphite powder size and concentration coupled with the electrical parameters (peak current and pulse time on) significantly influenced the recast layer thickness, micro hardness, crater size, MRR and TWR. The crater depth and micro hardness were maximized at a higher concentration and particle size, while the recast layer thickness was reduced with a higher gain size.

13.
J Food Biochem ; 46(9): e14251, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35633198

RESUMEN

Bioactive peptides are naturally found in various foods and were shown to have various distinct physiological as well as medicinal benefits. In this study shrimp peptide hydrolysate (SPH) was prepared to investigate its immunomodulatory effect against cyclophosphamide (CTX) induced immunosuppressed mice. The SPH effect was also analyzed on murine macrophage (RAW264.7 cells). The findings show that SPH stimulates macrophages to form multiple pseudopodia, has no cytotoxic effect, and increases phagocytic activity in RAW264.7 cells. Furthermore, the immunosuppressed in-vivo model illustrates the improvement in various aspects, that is body weight, escalation in immune organ index, and ameliorates histopathological transformation of thymus along with the spleen. SPH enhances cell-mediated immunity by facilitating splenocyte proliferation and inhibit excessive apoptosis. Moreover, the significant outcome had been observed with the upregulation of cytokines interferon-gamma (IFN-ϒ), interleukin-2 (IL-2) level and simultaneously downregulate certain genes include interleukin-4 (IL-4) and interleukin-10 (IL-10). Additionally, SPH expedites cellular immunity by enhancing the regulation of immunoglobulin A (IgA) and immunoglobulin M (IgM). However, these findings support the hypothesis that SPH is an effective immunomodulatory agent capable of preventing immune system hypofunction. It is necessary to investigate the detailed mechanism to rule out any unforeseen effects of SPH in future research. PRACTICAL APPLICATIONS: Chemotherapy medications, despite their dominating detrimental effects of damaging immunological organs such as the spleen and thymus, extend the treatment process as well as the destruction of the self-immune system. This study found that SPH is an effective immunomodulatory agent capable of avoiding immune organ hypofunction and improving cell mediate immunity by enhancing macrophage activation, phagocytosis, spleenocyte proliferation, suppressing apoptosis, and elevating cytokines and antibodies. As a result, SPH can be utilized as a nutritional and functional dietary supplement to boost immunological modulation in combination with chemotherapy medications in order to lessen their adverse effects.


Asunto(s)
Huésped Inmunocomprometido , Factores Inmunológicos , Animales , Ciclofosfamida/efectos adversos , Citocinas , Modelos Animales de Enfermedad , Inmunidad , Factores Inmunológicos/farmacología , Ratones , Péptidos/farmacología
14.
Molecules ; 27(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35268821

RESUMEN

The gut microbiota is important in regulating host metabolism, maintaining physiology, and protecting immune homeostasis. Gut microbiota dysbiosis affects the development of the gut microenvironment, as well as the onset of various external systemic diseases and metabolic syndromes. Cyclophosphamide (CTX) is a commonly used chemotherapeutic drug that suppresses the host immune system, intestinal mucosa inflammation, and dysbiosis of the intestinal flora. Immunomodulators are necessary to enhance the immune system and prevent homeostasis disbalance and cytotoxicity caused by CTX. In this study, shrimp peptide hydrolysate (SPH) was evaluated for immunomodulation, intestinal integration, and microbiota in CTX-induced immunosuppressed mice. It was observed that SPH would significantly restore goblet cells and intestinal mucosa integrity, modulate the immune system, and increase relative expression of mRNA and tight-junction associated proteins (Occludin, Zo-1, Claudin-1, and Mucin-2). It also improved gut flora and restored the intestinal microbiota ecological balance by removing harmful microbes of various taxonomic groups. This would also increase the immune organs index, serum levels of cytokines (IFN-ϒ, IL1ß, TNF-α, IL-6), and immunoglobin levels (IgA, IgM). The Firmicutes/Bacteroidetes proportion was decreased in CTX-induced mice. Finally, SPH would be recommended as a functional food source with a modulatory effect not only on intestinal microbiota, but also as a potential health-promoting immune function regulator.


Asunto(s)
Microbioma Gastrointestinal , Animales , Ciclofosfamida/efectos adversos , Disbiosis/metabolismo , Inmunidad , Mucosa Intestinal/metabolismo , Ratones , Péptidos/farmacología
15.
Food Chem ; 371: 131390, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808780

RESUMEN

Some recent studies have revealed individual and the combined interactions of gluten and starch affecting dough mixing properties. However, the combined influence of high-molecular-weight glutenin subunits (HMW-GS) and starch on dough mixing and rheological properties requires elucidation. Thus four recombinant inbred lines, SS 1, SS 2, ZZ 1 and ZZ 2, were selected based on their HMW-GSs compositions. Compared to ZZ 1 and ZZ 2, both SS 1 and SS 2 carried superior HMW-GS alleles, and exhibited extended dough development and stability time, indicating their significant dough mixing characteristics. The gluten skeleton of the wheat lines SS 2 and ZZ 2 with higher B-type starch proportions exhibited fewer breakages along with the rise of dough temperature during mixing. Higher content of B-type starch strengthens interaction between starch and gluten skeleton at the dough heating stage, suggesting a specific range of B-type starch proportion can improve dough mixing characteristics.


Asunto(s)
Almidón , Triticum , Glútenes , Reología , Esqueleto , Triticum/genética
16.
AMB Express ; 11(1): 160, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855004

RESUMEN

Hepatocellular carcinoma is one of the leading causes of cancer-associated death across the globe. Malignant ascites are the major clinical attributes in cancer patients. Despite the advancements in HCC treatments such as chemotherapy, radiotherapy, surgery, and hormonal therapy, researchers are pursuing novel natural edible compounds for the treatment of cancer to eliminate dreadful side effects. Pleurotus ostreatus is one of the most edible cuisines in Asia as well as all over the world. It has been a source of nutritious diet since it was classified as an edible mushroom with no or negligible side effects. The present study focused on the natural anti-cancerous and anti-ascites capabilities of polysaccharides extracted from Pleurotus ostreatus in-vivo as well as in-vitro. Administration of polysaccharide Pleurotus ostreatus showed a significant decrease in tumor cell metastasis while the increase in the survival period among mice models of H22 malignant ascites. Downregulation of regenerative genes Foxp3 and Stat3 and secretion of immunological factors such as IL-2, TNF α, and INF γ were observed after treating with the partially pure extracted polysaccharide. Twining with the hypothesis of tumor suppression in-vivo model polysaccharide showed a decrease in invasion and migration abilities and henceforth responsible for the gene regulation such Cytochrome C which supposedly induced the chain of gene regulation process resulting in apoptosis in HCC cell lines observed in-vitro experiments. Collective research findings manifested that polysaccharide extracted from Pleurotus ostreatus bears anti-proliferative activity and thus influence tumor suppression in-vivo and in-vitro against hepatocellular carcinoma and can be used for therapeutic purposes as a potential anti-cancerous source in the future.

17.
Sci Rep ; 11(1): 20754, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675270

RESUMEN

Silver nanoparticles (Ag. NPs) have shown a biological activity range, synthesized under different environment-friendly approaches. Ag. NPs were synthesized using aqueous crude extract (ACE) isolated from Plantago lanceolata. The ACE and Ag. NPs were characterized and assessed their biological and antioxidant activities. The existence of nanoparticles (NPs) was confirmed by color shift, atomic force microscopy (AFM), and UV-Vis's spectroscopy. The FT-IR analysis indicated the association of biomolecules (phenolic acid and flavonoids) to reduce silver (Ag+) ions. The SEM study demonstrated a sphere-shaped and mean size in the range of 30 ± 4 nm. The EDX spectrum revealed that the Ag. NPs were composed of 54.87% Ag with 20 nm size as identified by SEM and TEM. AFM has ended up being exceptionally useful in deciding morphological elements and the distance across of Ag. NPs in the scope of 23-30 nm. The TEM image showed aggregations of NPs and physical interaction. Ag. NPs formation also confirmed by XPS, DRS and BET studies. Ag. NPs showed efficient activity as compared to ACE, and finally, the bacterial growth was impaired by biogenic NPs. The lethal dose (LD50) of Ag. NPs against Agrobacterium tumefaciens, Proteus vulgaris, Staphylococcus aureus, and Escherichia coli were 45.66%, 139.71%, 332.87%, and 45.54%, with IC50 (08.02 ± 0.68), (55.78 ± 1.01), (12.34 ± 1.35) and (11.68 ± 1.42) respectively, suppressing the growth as compared to ACE. The antioxidant capacity, i.e., 2,2-diphenyl-1-picrylhydrazyl (DPPH) of Ag. NPs were assayed. ACE and Ag. NPs achieved a peak antioxidant capacity of 62.43 ± 2.4 and 16.85 ± 0.4 µg mL-1, compared to standard (69.60 ± 1.1 at 100 µg mL-1) with IC50 (369.5 ± 13.42 and 159.5 ± 10.52 respectively). Finally, the Ag. NPs synthesized by P. lanceolata extract have an excellent source of bioactive natural products (NP). Outstanding antioxidant, antibacterial activities have been shown by NPs and can be used in various biological techniques in future research.


Asunto(s)
Antibacterianos/química , Antioxidantes/química , Nanopartículas del Metal/química , Plantago/química , Plata/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antioxidantes/síntesis química , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Nanopartículas del Metal/ultraestructura , Nanotecnología
18.
J Colloid Interface Sci ; 597: 39-47, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33862446

RESUMEN

The development of superior heterogeneous catalyst for hydrogen (H2) evolution is a significant feature and challenging for determining the energy and environmental crises. However, the dumping of numerous lethal colorants (dye) as of textile manufacturing has fascinated widespread devotion-aimed water pollution anticipation and treatment. In this regard, a photocatalytic H2 evolution by visible light using low-dimensional semiconducting materials having pollutant degradable capacity for Rhodamine B dyes (RhB) has been anticipated as a route towards environmental aspect. Here we fabricated the incorporation of organic electron-rich heterocyclic monomer 2,6-dimethylmorpholine (MP), inside electron-poor graphitic carbon nitride (g-CN) semiconductor by solid-state co-polymerization. The supremacy of copolymerization process was successfully examined via absorbent, calculated band gap, and migration of electrons on the photocatalytic performance of as-constructed CN-MP copolymer. The density functional theory (DFT) calculation provides extra support as evident for the successful integration of MP into the g-CN framework by this means-reduced band gap upon co-polymerization. The hydrogen evolution rate (HER) for g-CN was found as 115.2 µmol/h, whereas for CN-PM0.1was estimated at 641.2 µmol/h (six times higher). In particular, the pseudo-order kinetic constant of CN-MP0.1 for photodegradation of RhB was two times higher than that ofg-CN. Results show an important step toward tailor-designed and explain the vital role of the D-A system for the rational motifs of productive photocatalysts with effective pollutant degradable capability for future demand.

19.
Molecules ; 26(7)2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33916639

RESUMEN

Valorization of vegetable oil waste residues is gaining importance due to their high protein and polyphenol contents. Protease inhibitors (PIs), proteins from these abundantly available waste residues, have recently gained importance in treating chronic diseases. This research aimed to use canola meal of genetically diverse Brassica napus genotypes, BLN-3347 and Rivette, to identify PIs with diverse functionalities in therapeutic and pharmacological applications. The canola meal PI purification steps involved: native PAGE and trypsin inhibition activity, followed by ammonium sulfate fractionation, anion exchange, gel filtration, and reverse-phase chromatography. The purified PI preparations were characterized using SDS-PAGE, isoelectric focusing (IEF), and N terminal sequencing. SDS-PAGE analysis of PI preparations under native reducing and nonreducing conditions revealed three polymorphic PIs in each genotype. The corresponding IEF of the genotype BLN-3347, exhibited three acidic isoforms with isoelectric points (pI) of 4.6, 4.0, and 3.9, while Rivette possessed three isoforms, exhibiting two basic forms of pI 8.65 and 9.9, and one acidic of pI 6.55. Purified PI preparations from both the genotypes displayed dipeptidyl peptidase-IV (DPP-IV) and angiotensin-converting enzyme (ACE) inhibition activities; the BLN-3347 PI preparation exhibited a strong inhibitory effect with lower IC50 values (DPP-IV 37.42 µg/mL; ACE 129 µg/mL) than that from Rivette (DPP-IV 67.97 µg/mL; ACE 376.2 µg/mL). In addition to potential human therapy, these highly polymorphic PIs, which can inhibit damaging serine proteases secreted by canola plant pathogens, have the potential to be used by canola plant breeders to seek qualitative trait locus (QTLs) linked to genes conferring resistance to canola diseases.


Asunto(s)
Antihipertensivos/farmacología , Brassica napus/química , Dipeptidil Peptidasa 4/química , Inhibidores Enzimáticos/farmacología , Hipoglucemiantes/farmacología , Peptidil-Dipeptidasa A/química , Secuencia de Aminoácidos , Antihipertensivos/química , Antihipertensivos/aislamiento & purificación , Brassica napus/genética , Brassica napus/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Genotipo , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Focalización Isoeléctrica , Cinética , Extracción Líquido-Líquido/métodos , Peptidil-Dipeptidasa A/metabolismo , Extractos Vegetales/química
20.
Carbohydr Polym ; 257: 117623, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33541650

RESUMEN

Our study on six wheat genotypes has revealed strong interaction between gluten and starch to affect dough stability. To establish gluten-starch interaction and its roles in dough stability, we randomly selected 16 wheat genotypes and investigated the physicochemical properties of gluten and starch. The manner in which the starch granules occupied available space in gluten network was quantitatively analyzed using gluten lacunarity and proportion of different sized A-type and B-type starch granules. Positive correlations were found between the morphological attributes (B/A/Lacunarity, B/Lacunarity) and dough stability. The correlation coefficient between B/A/Lacunarity and dough stability was highest, followed by the percentage of unextractable polymeric protein (UPP%), B/Lacunarity and dough stability. Dough mixing properties were strongly affected by gluten-starch interactions, as indicated by novel parameters. Whereas the effect of gluten on its own did not provide any evidence to suggest its concrete role in dough mixing properties because of the various genetic backgrounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...