Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Stem Cells ; 13(1): 27-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505823

RESUMEN

OBJECTIVE: In regenerative biology, the most commonly used cells are adipose tissue-derived mesenchymal stem cells (AD-MSCs). This is due to the abundance and easy accessibility of AD-MSCs. METHODS: In this study, canine AD-MSCs were harvested from different anatomical locations, i.e., subcutaneous (SC), omental (OM), and perirenal (PR). Various isolation techniques namely explants (TRT-I), collagenase-digestion (TRT-II), collagenase-digested explants (TRT-III), and trypsin-digested explants (TRT-IV) were used to segregate the MSCs to evaluate cell doubling time, viability, and adipogenic/osteogenic lineage differentiation potential. RESULTS: The study showed that the SC stem cells had superior growth kinetics compared to other tissues, while the cells isolated through TRT-II performed better than the other cell isolation procedures. The metabolic status of cells isolated from dog adipose tissue indicated that all cells had adequate metabolic rates. However, SC-MSCs derived from TRT-III and TRT-IV outperformed those derived from TRT-I and TRT-II. The differentiation analysis revealed that cells differentiate into adipogenic and osteogenic lineage regardless of treatment, as demonstrated by positive oil red O (ORO) and Alizarin Red S (ALZ) stain. It is worth mentioning that cells derived from TRT-III had larger and more intracellular droplets compared to the other treatments. The TRT-I, -II, and -III showed greater osteogenic differentiation in cells isolated from PR and OM regions compared to SC-derived cells. However, the TRT-IV resulted in better osteogenic differentiation in cells from SC, followed by the OM and PR-derived cells. CONCLUSION: It is concluded that all methods of MSCs isolation from adipose tissues are successful; however, the TRT-II had the highest rate of cell re-assortment from the SC, while, TRT-II and -IV are most suitable for isolating cells from PR and OM adipose tissue.

2.
J Poult Sci ; 59(3): 272-281, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35989690

RESUMEN

The current study aimed to evaluate the efficacy of selenium nanoparticles (SeNPs), combined or loaded with chitosan (COS), in broiler chickens reared under standard management protocols. The parameters under investigation were production performance, organ development, components of the intestinal barrier, and ileal microbial count. Two hundred and forty day-old chicks were raised in five groups, with each group containing eight replicates (n=6/replicate). The control group received a basal diet whereas the other four groups received basal diets supplemented with SeNPs (0.5 mg/kg), COS (200 mg/kg), SeNPs+COS (0.5 mg/kg SeNPs + 200 mg/kg COS), and SeNPs-loaded COS (SeNPs-L-COS) (200 mg/kg) respectively. On day 35, two birds/replicate were sampled to collect the viscera under investigation. The results revealed that dietary inclusion of SeNPs-L-COS increased (p<0.05) the body weight gain and improved (p<0.05) feed conversion ratio. Similarly, SeNPs-L-COS supplementation increased (p<0.05) the small intestinal villus surface area as well as the count of acidic goblet cells and intraepithelial lymphocytes when compared with the control group. Whereas the total goblet cell count was higher (p<0.05) in the small intestines of both the SeNPs+COS and SeNPs-L-COS groups. Microbial analysis of ileal contents also revealed an increase (p<0.05) in Lactobacilli species count with a concurrent decrease (p<0.05) in Escherichia coli count in the SeNPs-L-COS group when compared with the COS and control groups. Based on the results of the current trial, we can conclude that supplementation with SeNPs-L-COS is a superior combination for promoting the gut health and performance of broilers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...