Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36616584

RESUMEN

Thermal conductivity (TC) and thermal stability are the basic requirements and highly desirable properties in thermal management, heat storage and heat transfer applications. This work is regarding the fabrication of polystyrene/boron nitride composites and melt extruded to produce good thermal stability, increased thermal conductivity and enhanced mechanical properties. Our strategy is potentially applicable to produce thermally conductive composites of low cost over large scale. Boron nitride powder is bath sonicated in 10% NH3 solution to avoid its agglomeration and tendency toward entanglement in a polymer matrix. An approximately 67.43% increase in thermal conductivity and 69.37% increase in tensile strength as well as 56 multiple increases in thermal stability of the optimum samples were achieved. The developed polymeric composites are potentially applicable in the electronic industry, especially in electronic devices used for 5G, heat sink and several other aviation applications.

2.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080650

RESUMEN

Polystyrene (PS)/sepiolite clay nanocomposites were prepared via the melt extrusion technique using vinyl tri-ethoxy silane (VTES) as the compatibilizer and cross-linking agent. Mechanical, thermal, and flame-retardant properties of the newly developed polystyrene-based nanocomposites were determined. Surface morphology was investigated using scanning electron microscopy (SEM), examining the distribution of the filler in various compositions of fabricated composites. Structural analysis of the samples was carried out using the Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. Thermal stability was determined by thermal gravimetric analysis (TGA), showing a maximum 30.2 wt.% increase in residue by adding sepiolite clay. The results obtained from the dynamic mechanical analyzer (DMA) in terms of the storage modulus, loss modulus and damping factor exhibited better stress transfer rate and effective interfacial adhesion between the filler and the matrix. The higher filler loaded sample showed greater flame retardancy by decreasing the burning rate up to 48%.

3.
Nanomaterials (Basel) ; 12(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35269369

RESUMEN

The aim of the present work was to synthesize magnetite (Fe3O4) nano hollow spheres (NHS) via simple, one-pot, template-free, hydrothermal method. The structural, morphological, and surface analysis of Fe3O4 NHS were studied by scanning electron microscopy (SEM), x-ray diffraction technique (XRD), Fourier transform infrared spectroscopy FTIR and burner-Emmett-teller (BET). The as obtained magnetic (Fe3O4) NHS were used as an adsorbent for treating industrial trinitrotoluene (TNT) wastewater to reduce its Chemical Oxygen Demand (COD) values. Adsorption capacity (Qe) of the NHS obtained is 70 mg/g, confirming the attractive forces present between adsorbent (Fe3O4 NHS) and adsorbate (TNT wastewater). COD value of TNT wastewater was reduced to >92% in 2 h at room temperature. The adsorption capacity of Fe3O4 NHS was observed as a function of time, initial concentration, pH, and temperature. The applied Fe3O4 NHS was recovered for reuse by simply manipulating its magnetic properties with slight shift in pH of the solution. A modest decrease in Qe (5.0−15.1%) was observed after each cycle. The novel Fe3O4 NHS could be an excellent candidate for treating wastewater generated by the intermediate processes during cyclonite, cyclotetramethylene-tetranitramine (HMX), nitroglycerin (NG) production and other various environmental pollutants/species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...