Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 17(10): e2100684, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35666486

RESUMEN

Phaeodactylum tricornutum is a marine diatom, rich in omega-3 polyunsaturated fatty acids especially eicosapentaenoic acid (EPA) and brown pigment, that is, fucoxanthin. These high-value renewables (HVRs) have a high commercial and nutritional relevance. In this study, our focus was to enhance the productivities of such renewables by employing media engineering strategy via., photoautotrophic (P1, P2, P3) and mixotrophic (M1, M2, M3, M4) modes of cultivation with varying substrate combinations of carbon (glycerol: 0.1 m) and nitrogen (urea: 441 mm and/or sodium nitrate: 882 mm). Our results demonstrate that mixotrophic [M4] condition supplemented with glycerol (0.1 m) and urea (441 mm) feed enhanced productivities (mg L-1  day-1 ) as follows: biomass (770.0), total proteins (36.0), total lipids (22.0), total carbohydrates (23.0) with fatty acid methyl esters (9.6), EPA (2.7), and fucoxanthin (1.1), respectively. The overall yield of EPA represents 28% of total fatty acids in the mixotrophic [M4] condition. In conclusion, our improved strategy of feeding urea to a glycerol-supplemented medium defines a new efficient biomass valorization paradigm with cost-effective substrates for the production of HVRs in oleaginous diatoms P. tricornutum.


Asunto(s)
Diatomeas , Microalgas , Carbono/metabolismo , Análisis Costo-Beneficio , Diatomeas/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ésteres/metabolismo , Glicerol/metabolismo , Microalgas/metabolismo , Nitrógeno/metabolismo , Urea/metabolismo , Xantófilas
2.
Front Microbiol ; 12: 693106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394032

RESUMEN

Microalgae, due to their unique properties, gained attention for producing promising feedstocks having high contents of proteins, antioxidants, carotenoids, and terpenoids for applications in nutraceutical and pharmaceutical industries. Optimizing production of the high-value renewables (HVRs) in microalgae requires an in-depth understanding of their functional relationship of the genes involved in these metabolic pathways. In the present study, bioinformatic tools were employed for characterization of the protein-encoding genes of methyl erythritol phosphate (MEP) pathway involved in carotenoid and squalene biosynthesis based upon their conserved motif/domain organization. Our analysis demonstrates nearly 200 putative genes showing a conservation pattern within divergent microalgal lineages. Furthermore, phylogenomic studies confirm the close evolutionary proximity among these microalgal strains in the carotenoid and squalene biosynthetic pathways. Further analysis employing STRING predicts interactions among two rate-limiting genes, i.e., phytoene synthase (PSY) and farnesyl diphosphate farnesyl synthase (FPPS), which are specifically involved in the synthesis of carotenoids and squalene. Experimentally, to understand the carbon flux of these rate-limiting genes involved in carotenogenesis, an industrial potential strain, namely, Botryococcus braunii, was selected in this study for improved biomass productivity (i.e., 100 mg L-1 D-1) along with enhanced carotenoid content [0.18% dry cell weight (DCW)] when subjected to carbon supplementation. In conclusion, our approach of media engineering demonstrates that the channeling of carbon flux favors carotenogenesis rather than squalene synthesis. Henceforth, employing omics perspectives will further provide us with new insights for engineering regulatory networks for enhanced production of high-value carbon biorenewables without compromising growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...