Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37552066

RESUMEN

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Asunto(s)
Discapacidad Intelectual , Megalencefalia , Trastornos del Neurodesarrollo , Animales , Humanos , Niño , Pez Cebra/genética , Pez Cebra/metabolismo , Caenorhabditis elegans/metabolismo , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Fenotipo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Megalencefalia/genética , Discapacidades del Desarrollo/genética , Mutación Missense/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
2.
JIMD Rep ; 64(3): 217-222, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37151363

RESUMEN

Glutaminase (GLS) hyperactivity was first described in 2019 in a patient with profound developmental delay and infantile cataract. Here, we describe a 4-year-old boy with GLS hyperactivity due to a de novo heterozygous missense variant in GLS, detected by trio whole exome sequencing. This boy also exhibits developmental delay without dysmorphic features, but does not have cataract. Additionally, he suffers from epilepsy with tonic clonic seizures. In line with the findings in the previously described patient with GLS hyperactivity, in vivo 3 T magnetic resonance spectroscopy (MRS) of the brain revealed an increased glutamate/glutamine ratio. This increased ratio was also found in urine with UPLC-MS/MS, however, inconsistently. This case indicates that the phenotypic spectrum evoked by GLS hyperactivity may include epilepsy. Clarifying this phenotypic spectrum is of importance for the prognosis and identification of these patients. The combination of phenotyping, genetic testing, and metabolic diagnostics with brain MRS and in urine is essential to identify new patients with GLS hyperactivity and to further extend the phenotypic spectrum of this disease.

3.
Am J Hum Genet ; 110(1): 146-160, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608681

RESUMEN

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.


Asunto(s)
Discapacidad Intelectual , Linfopenia , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Transducción de Señal/genética , Discapacidad Intelectual/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfopenia/genética
4.
Cell Rep ; 39(1): 110584, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385742

RESUMEN

Elevated expression of non-receptor tyrosine kinase FER is an independent prognosticator that correlates with poor survival of high-grade and basal/triple-negative breast cancer (TNBC) patients. Here, we show that high FER levels are also associated with improved outcomes after adjuvant taxane-based combination chemotherapy in high-risk, HER2-negative patients. In TNBC cells, we observe a causal relation between high FER levels and sensitivity to taxanes. Proteomics and mechanistic studies demonstrate that FER regulates endosomal recycling, a microtubule-dependent process that underpins breast cancer cell invasion. Using chemical genetics, we identify DCTN2 as a FER substrate. Our work indicates that the DCTN2 tyrosine 6 is essential for the development of tubular recycling domains in early endosomes and subsequent propagation of TNBC cell invasion in 3D. In conclusion, we show that high FER expression promotes endosomal recycling and represents a candidate predictive marker for the benefit of adjuvant taxane-containing chemotherapy in high-risk patients, including TNBC patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/metabolismo , Hidrocarburos Aromáticos con Puentes/farmacología , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Endosomas/metabolismo , Femenino , Humanos , Taxoides/farmacología , Taxoides/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
5.
Brain Commun ; 3(4): fcab256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805998

RESUMEN

The recent identification of NAA80/NAT6 as the enzyme that acetylates actins generated new insight into the process of post-translational actin modifications; however, the role of NAA80 in human physiology and pathology has not been clarified yet. We report two individuals from a single family harbouring a homozygous c.389T>C, p.(Leu130Pro) NAA80 genetic variant. Both individuals show progressive high-frequency sensorineural hearing loss, craniofacial dysmorphisms, developmental delay and mild proximal and axial muscle weakness. Based on the molecular structure, we predicted and confirmed the NAA80 c.389T>C, p.(Leu130Pro) variant to result in protein destabilization, causing severely decreased NAA80 protein availability. Concurrently, individuals exhibited a ∼50% decrease of actin acetylation. NAA80 individual derived fibroblasts and peripheral blood mononuclear cells showed increased migration, increased filopodia counts and increased levels of polymerized actin, in agreement with previous observations in NAA80 knock-out cells. Furthermore, the significant clinical overlap between NAA80 individuals and individuals with pathogenic variants in several actin subtypes reflects the general importance of controlled actin dynamics for the inner ear, brain and muscle. Taken together, we describe a new syndrome, caused by NAA80 genetic variants leading to decreased actin acetylation and disrupted associated molecular functions. Our work suggests a crucial role for NAA80-mediated actin dynamics in neuronal health, muscle health and hearing.

6.
J Am Soc Nephrol ; 32(11): 2885-2899, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34607910

RESUMEN

BACKGROUND: Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS: We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS: In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS: Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.


Asunto(s)
Cardiomiopatía Dilatada/genética , Hipercalciuria/genética , Enfermedades Renales/genética , Proteínas de Unión al GTP Monoméricas/genética , Mutación Missense , Nefrocalcinosis/genética , Defectos Congénitos del Transporte Tubular Renal/genética , Serina-Treonina Quinasas TOR/metabolismo , Cardiomiopatía Dilatada/metabolismo , Femenino , Células HEK293 , Humanos , Hipercalciuria/metabolismo , Enfermedades Renales/metabolismo , Túbulos Renales Distales/metabolismo , Masculino , Modelos Moleculares , Natriuresis/genética , Nefrocalcinosis/metabolismo , Linaje , Conformación Proteica , Defectos Congénitos del Transporte Tubular Renal/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Transducción de Señal , Secuenciación del Exoma , Secuenciación Completa del Genoma
7.
Nat Genet ; 53(8): 1187-1195, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34211178

RESUMEN

Central to tumor evolution is the generation of genetic diversity. However, the extent and patterns by which de novo karyotype alterations emerge and propagate within human tumors are not well understood, especially at single-cell resolution. Here, we present 3D Live-Seq-a protocol that integrates live-cell imaging of tumor organoid outgrowth and whole-genome sequencing of each imaged cell to reconstruct evolving tumor cell karyotypes across consecutive cell generations. Using patient-derived colorectal cancer organoids and fresh tumor biopsies, we demonstrate that karyotype alterations of varying complexity are prevalent and can arise within a few cell generations. Sub-chromosomal acentric fragments were prone to replication and collective missegregation across consecutive cell divisions. In contrast, gross genome-wide karyotype alterations were generated in a single erroneous cell division, providing support that aneuploid tumor genomes can evolve via punctuated evolution. Mapping the temporal dynamics and patterns of karyotype diversification in cancer enables reconstructions of evolutionary paths to malignant fitness.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Análisis de la Célula Individual/métodos , Proliferación Celular/genética , Cromatina/genética , Cromosomas Humanos , Dosificación de Gen , Humanos , Cariotipo , Cariotipificación , Microscopía Confocal , Mitosis , Organoides/crecimiento & desarrollo , Organoides/patología , Huso Acromático/genética
8.
Genet Med ; 23(11): 2202-2207, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34194004

RESUMEN

PURPOSE: Recessive cytosolic aminoacyl-tRNA synthetase (ARS) deficiencies are severe multiorgan diseases, with limited treatment options. By loading transfer RNAs (tRNAs) with their cognate amino acids, ARS are essential for protein translation. However, it remains unknown why ARS deficiencies lead to specific symptoms, especially early life and during infections. We set out to increase pathophysiological insight and improve therapeutic possibilities. METHODS: In fibroblasts from patients with isoleucyl-RS (IARS), leucyl-RS (LARS), phenylalanyl-RS-beta-subunit (FARSB), and seryl-RS (SARS) deficiencies, we investigated aminoacylation activity, thermostability, and sensitivity to ARS-specific amino acid concentrations, and developed personalized treatments. RESULTS: Aminoacylation activity was reduced in all patients, and further diminished at 38.5/40 °C (PLARS and PFARSB), consistent with infectious deteriorations. With lower cognate amino acid concentrations, patient fibroblast growth was severely affected. To prevent local and/or temporal deficiencies, we treated patients with corresponding amino acids (follow-up: 1/2-2 2/3rd years), and intensified treatment during infections. All patients showed beneficial treatment effects, most strikingly in growth (without tube feeding), head circumference, development, coping with infections, and oxygen dependency. CONCLUSION: For these four ARS deficiencies, we observed a common disease mechanism of episodic insufficient aminoacylation to meet translational demands and illustrate the power of amino acid supplementation for the expanding ARS patient group. Moreover, we provide a strategy for personalized preclinical functional evaluation.


Asunto(s)
Aminoacil-ARNt Sintetasas , Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacilación , Humanos , ARN de Transferencia/metabolismo
9.
Nat Cell Biol ; 23(4): 377-390, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33795873

RESUMEN

Direct targeting of the downstream mitogen-activated protein kinase (MAPK) pathway to suppress extracellular-regulated kinase (ERK) activation in KRAS and BRAF mutant colorectal cancer (CRC) has proven clinically unsuccessful, but promising results have been obtained with combination therapies including epidermal growth factor receptor (EGFR) inhibition. To elucidate the interplay between EGF signalling and ERK activation in tumours, we used patient-derived organoids (PDOs) from KRAS and BRAF mutant CRCs. PDOs resemble in vivo tumours, model treatment response and are compatible with live-cell microscopy. We established real-time, quantitative drug response assessment in PDOs with single-cell resolution, using our improved fluorescence resonance energy transfer (FRET)-based ERK biosensor EKAREN5. We show that oncogene-driven signalling is strikingly limited without EGFR activity and insufficient to sustain full proliferative potential. In PDOs and in vivo, upstream EGFR activity rigorously amplifies signal transduction efficiency in KRAS or BRAF mutant MAPK pathways. Our data provide a mechanistic understanding of the effectivity of EGFR inhibitors within combination therapies against KRAS and BRAF mutant CRC.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Organoides/metabolismo , Organoides/patología , Análisis de la Célula Individual
10.
J Med Chem ; 63(10): 5159-5184, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32340447

RESUMEN

Exchange proteins directly activated by cAMP (EPAC) play a central role in various biological functions, and activation of the EPAC1 protein has shown potential benefits for the treatment of various human diseases. Herein, we report the synthesis and biochemical evaluation of a series of noncyclic nucleotide EPAC1 activators. Several potent EPAC1 binders were identified including 25g, 25q, 25n, 25u, 25e, and 25f, which promote EPAC1 guanine nucleotide exchange factor activity in vitro. These agonists can also activate EPAC1 protein in cells, where they exhibit excellent selectivity toward EPAC over protein kinase A and G protein-coupled receptors. Moreover, 25e, 25f, 25n, and 25u exhibited improved selectivity toward activation of EPAC1 over EPAC2 in cells. Of these, 25u was found to robustly inhibit IL-6-activated signal transducer and activator of transcription 3 (STAT3) and subsequent induction of the pro-inflammatory vascular cell adhesion molecule 1 (VCAM1) cell-adhesion protein. These novel EPAC1 activators may therefore act as useful pharmacological tools for elucidation of EPAC function and promising drug leads for the treatment of relevant human diseases.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , AMP Cíclico/agonistas , Evaluación Preclínica de Medicamentos/métodos , Factores de Intercambio de Guanina Nucleótido/agonistas , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Nucleótidos/síntesis química , Nucleótidos/química , Nucleótidos/farmacología , Unión Proteica/fisiología
11.
Cells ; 8(12)2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817822

RESUMEN

Signalling by cyclic adenosine monophosphate (cAMP) occurs via various effector proteins, notably protein kinase A and the guanine nucleotide exchange factors Epac1 and Epac2. These proteins are activated by cAMP binding to conserved cyclic nucleotide binding domains. The specific roles of the effector proteins in various processes in different types of cells are still not well defined, but investigations have been facilitated by the development of cyclic nucleotide analogues with distinct selectivity profiles towards a single effector protein. A remaining challenge in the development of such analogues is the poor membrane permeability of nucleotides, which limits their applicability in intact living cells. Here, we report the synthesis and characterisation of S223-AM, a cAMP analogue designed as an acetoxymethyl ester prodrug to overcome limitations of permeability. Using total internal reflection imaging with various fluorescent reporters, we show that S223-AM selectively activates Epac2, but not Epac1 or protein kinase A, in intact insulin-secreting ß-cells, and that this effect was associated with pronounced activation of the small G-protein Rap. A comparison of the effects of different cAMP analogues in pancreatic islet cells deficient in Epac1 and Epac2 demonstrates that cAMP-dependent Rap activity at the ß-cell plasma membrane is exclusively dependent on Epac2. With its excellent selectivity and permeability properties, S223-AM should get broad utility in investigations of cAMP effector involvement in many different types of cells.


Asunto(s)
AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Profármacos/farmacología , Animales , Línea Celular , Línea Celular Tumoral , AMP Cíclico/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Profármacos/síntesis química , Profármacos/química
12.
Cells ; 8(11)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726720

RESUMEN

Cyclic AMP promotes EPAC1 and EPAC2 activation through direct binding to a specific cyclic nucleotide-binding domain (CNBD) within each protein, leading to activation of Rap GTPases, which control multiple cell responses, including cell proliferation, adhesion, morphology, exocytosis, and gene expression. As a result, it has become apparent that directed activation of EPAC1 and EPAC2 with synthetic agonists may also be useful for the future treatment of diabetes and cardiovascular diseases. To identify new EPAC agonists we have developed a fluorescent-based, ultra-high-throughput screening (uHTS) assay that measures the displacement of binding of the fluorescent cAMP analogue, 8-NBD-cAMP to the EPAC1 CNBD. Triage of the output of an approximately 350,000 compound screens using this assay identified a benzofuran oxaloacetic acid EPAC1 binder (SY000) that displayed moderate potency using orthogonal assays (competition binding and microscale thermophoresis). We next generated a limited library of 91 analogues of SY000 and identified SY009, with modifications to the benzofuran ring associated with a 10-fold increase in potency towards EPAC1 over SY000 in binding assays. In vitro EPAC1 activity assays confirmed the agonist potential of these molecules in comparison with the known EPAC1 non-cyclic nucleotide (NCN) partial agonist, I942. Rap1 GTPase activation assays further demonstrated that SY009 selectively activates EPAC1 over EPAC2 in cells. SY009 therefore represents a novel class of NCN EPAC1 activators that selectively activate EPAC1 in cellulae.


Asunto(s)
Acetatos/farmacología , Benzofuranos/química , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Acetatos/química , Sitios de Unión , Línea Celular , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/agonistas , Factores de Intercambio de Guanina Nucleótido/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular
13.
Am J Hum Genet ; 105(2): 283-301, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31353023

RESUMEN

The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Hipotonía Muscular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Saccharomyces cerevisiae/crecimiento & desarrollo , Adolescente , Edad de Inicio , Niño , Preescolar , Femenino , Células HeLa , Heterocigoto , Humanos , Masculino , Hipotonía Muscular/enzimología , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Sci Rep ; 9(1): 8239, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160609

RESUMEN

Mutations in the RAS genes are identified in a variety of clinical settings, ranging from somatic mutations in oncology to germline mutations in developmental disorders, also known as 'RASopathies', and vascular malformations/overgrowth syndromes. Generally single amino acid substitutions are identified, that result in an increase of the GTP bound fraction of the RAS proteins causing constitutive signalling. Here, a series of 7 in-frame insertions and duplications in HRAS (n = 5) and KRAS (n = 2) is presented, resulting in the insertion of 7-10 amino acids residues in the switch II region. These variants were identified in routine diagnostic screening of 299 samples for somatic mutations in vascular malformations/overgrowth syndromes (n = 6) and in germline analyses for RASopathies (n = 1). Biophysical characterization shows the inability of Guanine Nucleotide Exchange Factors to induce GTP loading and reduced intrinsic and GAP-stimulated GTP hydrolysis. As a consequence of these opposing effects, increased RAS signalling is detected in a cellular model system. Therefore these in-frame insertions represent a new class of weakly activating clinically relevant RAS variants.


Asunto(s)
Mutación del Sistema de Lectura/genética , Mutagénesis Insercional/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Secuencia de Aminoácidos , Estudios de Cohortes , GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Proteínas Mutantes/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química
15.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239721

RESUMEN

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Asunto(s)
Glutaminasa/genética , Glutaminasa/fisiología , Adolescente , Animales , Encéfalo/metabolismo , Catarata/genética , Preescolar , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Mutación con Ganancia de Función/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
16.
JAMA Neurol ; 76(3): 342-350, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30575854

RESUMEN

Importance: The identification and understanding of the monogenic causes of neurodevelopmental disorders are of high importance for personalized treatment and genetic counseling. Objective: To identify and characterize novel genes for a specific neurodevelopmental disorder characterized by refractory seizures, respiratory failure, brain abnormalities, and death in the neonatal period; describe the outcome of glutaminase deficiency in humans; and understand the underlying pathological mechanisms. Design, Setting, and Participants: We performed exome sequencing of cases of neurodevelopmental disorders without a clear genetic diagnosis, followed by genetic and bioinformatic evaluation of candidate variants and genes. Establishing pathogenicity of the variants was achieved by measuring metabolites in dried blood spots by a hydrophilic interaction liquid chromatography method coupled with tandem mass spectrometry. The participants are 2 families with a total of 4 children who each had lethal, therapy-refractory early neonatal seizures with status epilepticus and suppression bursts, respiratory insufficiency, simplified gyral structures, diffuse volume loss of the brain, and cerebral edema. Data analysis occurred from October 2017 to June 2018. Main Outcomes and Measures: Early neonatal epileptic encephalopathy with glutaminase deficiency and lethal outcome. Results: A total of 4 infants from 2 unrelated families, each of whom died less than 40 days after birth, were included. We identified a homozygous frameshift variant p.(Asp232Glufs*2) in GLS in the first family, as well as compound heterozygous variants p.(Gln81*) and p.(Arg272Lys) in GLS in the second family. The GLS gene encodes glutaminase (Enzyme Commission 3.5.1.2), which plays a major role in the conversion of glutamine into glutamate, the main excitatory neurotransmitter of the central nervous system. All 3 variants probably lead to a loss of function and thus glutaminase deficiency. Indeed, glutamine was increased in affected children (available z scores, 3.2 and 11.7). We theorize that the potential reduction of glutamate and the excess of glutamine were a probable cause of the described physiological and structural abnormalities of the central nervous system. Conclusions and Relevance: We identified a novel autosomal recessive neurometabolic disorder of loss of function of glutaminase that leads to lethal early neonatal encephalopathy. This inborn error of metabolism underlines the importance of GLS for appropriate glutamine homeostasis and respiratory regulation, signal transduction, and survival.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Glutaminasa/deficiencia , Mutación/genética , Encéfalo/metabolismo , Encefalopatías/diagnóstico , Epilepsia/diagnóstico , Femenino , Glutamina/sangre , Humanos , Lactante , Recién Nacido , Masculino , Convulsiones/diagnóstico , Convulsiones/genética
17.
Sci Rep ; 7(1): 294, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28331191

RESUMEN

Screening of a carefully selected library of 5,195 small molecules identified 34 hit compounds that interact with the regulatory cyclic nucleotide-binding domain (CNB) of the cAMP sensor, EPAC1. Two of these hits (I942 and I178) were selected for their robust and reproducible inhibitory effects within the primary screening assay. Follow-up characterisation by ligand observed nuclear magnetic resonance (NMR) revealed direct interaction of I942 and I178 with EPAC1 and EPAC2-CNBs in vitro. Moreover, in vitro guanine nucleotide exchange factor (GEF) assays revealed that I942 and, to a lesser extent, I178 had partial agonist properties towards EPAC1, leading to activation of EPAC1, in the absence of cAMP, and inhibition of GEF activity in the presence of cAMP. In contrast, there was very little agonist action of I942 towards EPAC2 or protein kinase A (PKA). To our knowledge, this is the first observation of non-cyclic-nucleotide small molecules with agonist properties towards EPAC1. Furthermore, the isoform selective agonist nature of these compounds highlights the potential for the development of small molecule tools that selectively up-regulate EPAC1 activity.


Asunto(s)
Evaluación Preclínica de Medicamentos , Factores de Intercambio de Guanina Nucleótido/agonistas , Nucleótidos/aislamiento & purificación , Nucleótidos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espectroscopía de Resonancia Magnética , Unión Proteica
18.
Handb Exp Pharmacol ; 238: 135-147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27900608

RESUMEN

Epac1 and Epac2 are cyclic nucleotide-binding (CNB) domain containing proteins, which were originally identified as cAMP-regulated guanine nucleotide exchange factors (GEFs) for the small G-protein Rap. Therefore, Epac proteins founded next to protein kinase A (PKA) and cyclic nucleotide-regulated ion channels the third group of cAMP-responsive proteins in higher organisms. Epac proteins are involved in the regulation of several physiological processes. In particular Epac1 mediates the regulation of molecular processes underlying cell adhesion and mobility. In the pancreas activation of Epac2 potentiates the release of glucose-induced insulin secretion and received attention as a putative target for antidiabetic treatment. While the regulation of Epac by cAMP has been analysed in structural and biochemical detail, less is known on the interaction of Epac with non-canonical cyclic nucleotides. This chapter will discuss to what extent other cyclic purines than cAMP or cyclic pyrimidine could act as Epac agonists or antagonists. The focus will be on the biophysical analysis of the interaction between Epac and these cyclic nucleotides.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Nucleótidos Cíclicos/metabolismo , Sistemas de Mensajero Secundario , Animales , Sitios de Unión , Factores de Intercambio de Guanina Nucleótido/química , Humanos , Unión Proteica
19.
Structure ; 24(12): 2039-2040, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926831

RESUMEN

In this issue of Structure, Gingras et al. (2016) show that Ras association (RA) domains of the Rap1 and Ras interacting protein Rasip1 can form a dimer in the presence and absence of the small G protein Rap1. This provides an explanation for the observed complex formation in Rap1-mediated signaling.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas de Unión al GTP rap1 , Transducción de Señal , Proteínas ras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...