Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38701790

RESUMEN

Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.

2.
NPJ Parkinsons Dis ; 10(1): 39, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378815

RESUMEN

Sex influences the prevalence and symptoms of Lewy body dementia (LBD). However, genome-wide association studies typically focus on autosomal variants and exclude sex-specific risk factors. We addressed this gap by performing an X chromosome-wide association study using whole-genome sequence data from 2591 LBD cases and 4391 controls. We identified a significant risk locus within intron 1 of MAP3K15 (rs141773145, odds ratio = 2.42, 95% confidence interval = 1.65-3.56, p-value = 7.0 × 10-6) in female LBD cases conditioned for APOE ε4 dosage. The locus includes an enhancer region that regulates MAP3K15 expression in ganglionic eminence cells derived from primary cultured neurospheres. Rare variant burden testing showed differential enrichment of missense mutations in TEX13A in female LBD cases, that did not reach significance (p-value = 1.34 × 10-4). These findings support the sex-specific effects of genetic factors and a potential role of Alzheimer's-related risk for females with LBD.

3.
Commun Biol ; 7(1): 35, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182665

RESUMEN

Dementia with Lewy bodies (DLB) is a common form of dementia in the elderly population. We performed genome-wide DNA methylation mapping of cerebellar tissue from pathologically confirmed DLB cases and controls to study the epigenetic profile of this understudied disease. After quality control filtering, 728,197 CpG-sites in 278 cases and 172 controls were available for the analysis. We undertook an epigenome-wide association study, which found a differential methylation signature in DLB cases. Our analysis identified seven differentially methylated probes and three regions associated with DLB. The most significant CpGs were located in ARSB (cg16086807), LINC00173 (cg18800161), and MGRN1 (cg16250093). Functional enrichment evaluations found widespread epigenetic dysregulation in genes associated with neuron-to-neuron synapse, postsynaptic specialization, postsynaptic density, and CTCF-mediated synaptic plasticity. In conclusion, our study highlights the potential importance of epigenetic alterations in the pathogenesis of DLB and provides insights into the modified genes, regions and pathways that may guide therapeutic developments.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Anciano , Humanos , Enfermedad por Cuerpos de Lewy/genética , Cuerpos de Lewy/genética , Cerebelo , Metilación de ADN , Epigenoma
5.
Mov Disord ; 37(9): 1943-1948, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810449

RESUMEN

BACKGROUND: Loss-of-function mutations in GRN are a cause of familial frontotemporal dementia, and common variants within the gene have been associated with an increased risk of developing Alzheimer's disease and Parkinson's disease. Although TDP-43-positive inclusions are characteristic of GRN-related neurodegeneration, Lewy body copathology has also been observed in many GRN mutation carriers. OBJECTIVE: The objective of this study was to assess a Lewy body dementia (LBD) case-control cohort for pathogenic variants in GRN and to test whether there is an enrichment of damaging mutations among patients with LBD. METHODS: We analyzed whole-genome sequencing data generated for 2591 European-ancestry LBD cases and 4032 neurologically healthy control subjects to identify disease-causing mutations in GRN. RESULTS: We identified six heterozygous exonic GRN mutations in seven study participants (cases: n = 6; control subjects: n = 1). Each variant was predicted to be pathogenic or likely pathogenic. We found significant enrichment of GRN loss-of-function mutations in patients with LBD compared with control subjects (Optimized Sequence Kernel Association Test P = 0.0162). Immunohistochemistry in three definite LBD cases demonstrated Lewy body pathology and TDP-43-positive neuronal inclusions. CONCLUSIONS: Our findings suggest that deleterious GRN mutations are a rare cause of familial LBD. © 2022 International Parkinson Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Progranulinas , Proteínas de Unión al ADN/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Enfermedad por Cuerpos de Lewy/genética , Mutación/genética , Progranulinas/genética
7.
Hum Mutat ; 40(2): 193-200, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30412329

RESUMEN

We studied by a whole genomic approach and trios genotyping, 12 de novo, nonrecurrent small supernumerary marker chromosomes (sSMC), detected as mosaics during pre- or postnatal diagnosis and associated with increased maternal age. Four sSMCs contained pericentromeric portions only, whereas eight had additional non-contiguous portions of the same chromosome, assembled together in a disordered fashion by repair-based mechanisms in a chromothriptic event. Maternal hetero/isodisomy was detected with a paternal origin of the sSMC in some cases, whereas in others two maternal alleles in the sSMC region and biparental haplotypes of the homologs were detected. In other cases, the homologs were biparental while the sSMC had the same haplotype of the maternally inherited chromosome. These findings strongly suggest that most sSMCs are the result of a multiple-step mechanism, initiated by maternal meiotic nondisjunction followed by postzygotic anaphase lagging of the supernumerary chromosome and its subsequent chromothripsis.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas/genética , Herencia Materna/genética , Trisomía/genética , Alelos , Cromotripsis , Hibridación Genómica Comparativa , Femenino , Haplotipos/genética , Humanos , Hibridación Fluorescente in Situ , Edad Materna , Mosaicismo , Fenotipo , Diagnóstico Prenatal , Trisomía/patología
8.
Hum Genet ; 137(10): 817-829, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30276538

RESUMEN

We investigated 52 cases of de novo unbalanced translocations, consisting in a terminally deleted or inverted-duplicated deleted (inv-dup del) 46th chromosome to which the distal portion of another chromosome or its opposite end was transposed. Array CGH, whole-genome sequencing, qPCR, FISH, and trio genotyping were applied. A biparental origin of the deletion and duplication was detected in 6 cases, whereas in 46, both imbalances have the same parental origin. Moreover, the duplicated region was of maternal origin in more than half of the cases, with 25% of them showing two maternal and one paternal haplotype. In all these cases, maternal age was increased. These findings indicate that the primary driver for the occurrence of the de novo unbalanced translocations is a maternal meiotic non-disjunction, followed by partial trisomy rescue of the supernumerary chromosome present in the trisomic zygote. In contrast, asymmetric breakage of a dicentric chromosome, originated either at the meiosis or postzygotically, in which the two resulting chromosomes, one being deleted and the other one inv-dup del, are repaired by telomere capture, appears at the basis of all inv-dup del translocations. Notably, this mechanism also fits with the origin of some simple translocations in which the duplicated region was of paternal origin. In all cases, the signature at the translocation junctions was that of non-homologous end joining (NHEJ) rather than non-allelic homologous recombination (NAHR). Our data imply that there is no risk of recurrence in the following pregnancies for any of the de novo unbalanced translocations we discuss here.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Meiosis , Reparación del ADN por Recombinación , Translocación Genética/genética , Femenino , Humanos , Masculino
9.
Eur J Hum Genet ; 25(6): 694-701, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28422132

RESUMEN

16q24 deletion involving the ANKRD11 gene, ranging from 137 kb to 2 Mb, have been associated with a microdeletion syndrome characterized by variable cognitive impairment, autism spectrum disorder, facial dysmorphisms with dental anomalies, brain abnormalities essentially affecting the corpus callosum and short stature. On the other hand, patients carrying either deletions encompassing solely ANKRD11 or its loss-of-function variants were reported in association with the KBG syndrome, characterized by a very similar phenotype, including mild-to-moderate intellectual disability, short stature and macrodontia of upper incisors, with inter and intrafamilial variability. To assess whether the haploinsufficiency of ANKRD11-flanking genes, such as ZFPM1, CDH15 and ZNF778, contributed to either the severity of the neurological impairment or was associated with other clinical features, we collected 12 new cases with a 16q24.2q24.3 deletion (de novo in 11 cases), ranging from 343 kb to 2.3 Mb. In 11 of them, the deletion involved the ANKRD11 gene, whereas in 1 case only flanking genes upstream to it were deleted. By comparing the clinical and genetic features of our patients with those previously reported, we show that the severity of the neurological phenotype and the frequency of congenital heart defects characterize the deletions that, besides ANKRD11, contain ZFPM1, CDH15 and ZNF778 as well. Moreover, the presence of thrombocytopenia and astigmatism should be taken into account to distinguish between 16q24 microdeletion syndrome and KBG syndrome. The single patient not deleted for ANKRD11, whose phenotype is characterized by milder psychomotor delay, cardiac congenital malformation, thrombocytopenia and astigmatism, confirms all this data.


Asunto(s)
Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/genética , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Haploinsuficiencia , Discapacidad Intelectual/genética , Proteínas Represoras/genética , Anomalías Dentarias/genética , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Adolescente , Adulto , Enfermedades del Desarrollo Óseo/diagnóstico , Cadherinas/genética , Niño , Diagnóstico Diferencial , Facies , Femenino , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Proteínas Nucleares/genética , Fenotipo , Anomalías Dentarias/diagnóstico , Factores de Transcripción/metabolismo
10.
Hum Mutat ; 38(3): 260-264, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27805744

RESUMEN

Mutations in the thyroid hormone transporter SLC16A2 (MCT8) cause the Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and peripheral thyrotoxicosis. Here, we report three newly identified AHDS patients. Previously documented mutations were identified in probands 1 (p.R271H) and 2 (p.G564R), resulting in a severe clinical phenotype. A novel mutation (p.G564E) was identified in proband 3, affecting the same Gly564 residue, but resulting in a relatively mild clinical phenotype. Functional analysis in transiently transfected COS-1 and JEG-3 cells showed a near-complete inactivation of TH transport for p.G564R, whereas considerable cell-type-dependent residual transport activity was observed for p.G564E. Both mutants showed a strong decrease in protein expression levels, but differentially affected Vmax and Km values of T3 transport. Our findings illustrate that different mutations affecting the same residue may have a differential impact on SLC16A2 transporter function, which translates into differences in severity of the clinical phenotype.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Mutación , Fenotipo , Biomarcadores , Niño , Preescolar , Humanos , Imagen por Resonancia Magnética , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/terapia , Hipotonía Muscular/terapia , Atrofia Muscular/terapia , Linaje , Simportadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...