Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(19): 7160-7169, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756794

RESUMEN

Autonomous process optimization (APO) is a technology that has recently found utility in a multitude of process optimization challenges. In contrast to most APO examples in microflow reactor systems, we recently presented a system capable of optimization in high-throughput batch reactor systems. The drawback of APO in a high-throughput batch reactor system is the reliance on reaction sampling at a predetermined static timepoint rather than a dynamic endpoint. Static timepoint sampling can lead to the inconsistent capture of the process performance under each process parameter permutation. This is important because critical process behaviors such as rate acceleration accompanied by decomposition could be missed entirely. To address this drawback, we implemented a dynamic reaction endpoint determination strategy to capture the product purity once the process stream stabilized. We accomplished this through the incorporation of a real-time plateau detection algorithm into the APO workflow to measure and report the product purity at the dynamically determined reaction endpoint. We then applied this strategy to the autonomous optimization of a photobromination reaction towards the synthesis of a pharmaceutically relevant intermediate. In doing so, we not only uncovered process conditions to access the desired monohalogenation product in 85 UPLC area % purity with minimal decomposition risk, but also measured the effect of each parameter on the process performance. Our results highlight the advantage of incorporating dynamic sampling in APO workflows to drive optimization toward a stable and high-performing process.

2.
J Am Chem Soc ; 146(23): 16306-16313, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804633

RESUMEN

Transaminases are choice biocatalysts for the synthesis of chiral primary amines, including amino acids bearing contiguous stereocenters. In this study, we employ lysine as a "smart" amine donor in transaminase-catalyzed dynamic kinetic resolution reactions to access ß-branched noncanonical arylalanines. Our mechanistic investigation demonstrates that, upon transamination, the lysine-derived ketone byproduct readily cyclizes to a six-membered imine, driving the equilibrium in the desired direction and thus alleviating the need to load superstoichiometric quantities of the amine donor or deploy a multienzyme cascade. Lysine also shows good overall compatibility with a panel of wild-type transaminases, a promising hint of its application as a smart donor more broadly. Indeed, by this approach, we furnished a broad scope of ß-branched arylalanines, including some bearing hitherto intractable cyclopropyl and isopropyl substituents, with high yields and excellent selectivities.


Asunto(s)
Aminas , Aminoácidos , Lisina , Transaminasas , Transaminasas/metabolismo , Transaminasas/química , Aminas/química , Lisina/química , Aminoácidos/química , Aminoácidos/síntesis química , Biocatálisis , Estructura Molecular
3.
Analyst ; 149(8): 2227-2231, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38517550

RESUMEN

Pure shift NMR experiments greatly enhance spectral resolution by collapsing multiplet structures into singlets and, with water suppression, can be used for aqueous samples. Here, we combine ultra-clean pure-shift NMR (SAPPHIRE) with two different internally encoded water suppression schemes to achieve optimal performance for small molecule and macrocyclic peptide pharmaceuticals in water and acetonitrile-water mixtures.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Espectroscopía de Resonancia Magnética , Preparaciones Farmacéuticas
4.
Org Lett ; 26(4): 804-808, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38232150

RESUMEN

The development of a nucleophilic aromatic substitution (SNAr) reaction for the synthesis of belzutifan and related analogues is disclosed. This classical transformation suffered from reaction stalling, despite prolonged reaction times. Through experimental and mechanistic studies, product inhibition was revealed and rationalized. Herein, we describe our efforts to overcome this synthetic challenge and demonstrate the importance of the judicious choice of the solvent to achieve reactivity.

5.
Nat Commun ; 14(1): 1842, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012241

RESUMEN

HMBC is an essential NMR experiment for determining multiple bond heteronuclear correlations in small to medium-sized organic molecules, including natural products, yet its major limitation is the inability to differentiate two-bond from longer-range correlations. There have been several attempts to address this issue, but all reported approaches suffer various drawbacks, such as restricted utility and poor sensitivity. Here we present a sensitive and universal methodology to identify two-bond HMBC correlations using isotope shifts, referred to as i-HMBC (isotope shift detection HMBC). Experimental utility was demonstrated at the sub-milligram / nanomole scale with only a few hours of acquisition time required for structure elucidation of several complex proton-deficient natural products, which could not be fully elucidated by conventional 2D NMR experiments. Because i-HMBC overcomes the key limitation of HMBC without significant reduction in sensitivity or performance, i-HMBC can be used as a complement to HMBC when unambiguous identifications of two-bond correlations are needed.

6.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985422

RESUMEN

Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from only the first two rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO) method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for 13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.

7.
J Med Chem ; 66(3): 1955-1971, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36701387

RESUMEN

The internal conformational strain incurred by ligands upon binding a target site has a critical impact on binding affinity, and expectations about the magnitude of ligand strain guide conformational search protocols. Estimates for bound ligand strain begin with modeled ligand atomic coordinates from X-ray co-crystal structures. By deriving low-energy conformational ensembles to fit X-ray diffraction data, calculated strain energies are substantially reduced compared with prior approaches. We show that the distribution of expected global strain energy values is dependent on molecular size in a superlinear manner. The distribution of strain energy follows a rectified normal distribution whose mean and variance are related to conformational complexity. The modeled strain distribution closely matches calculated strain values from experimental data comprising over 3000 protein-ligand complexes. The distributional model has direct implications for conformational search protocols as well as for directions in molecular design.


Asunto(s)
Péptidos , Ligandos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Conformación Proteica , Difracción de Rayos X , Péptidos Cíclicos/química
8.
Pharm Res ; 40(6): 1435-1446, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36414838

RESUMEN

This study applies an emerging analytical technology, wNMR (water proton nuclear magnetic resonance), to assess the stability of aluminum adjuvants and antigen-adjuvant complexes against physical stresses, including gravitation, flow and freeze/thaw. Results from wNMR are verified by conventional analytical technologies, including static light scattering and microfluidic imaging. The results show that wNMR can quickly and noninvasively determine whether an aluminum adjuvant or antigen-adjuvant complex sample has been altered by physical stresses.


Asunto(s)
Adyuvantes Inmunológicos , Aluminio , Aluminio/química , Adyuvantes Inmunológicos/química , Antígenos/química
9.
Magn Reson Chem ; 61(3): 169-179, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36349476

RESUMEN

The recently reported 19 F-detected dual-optimized inverted 1 JCC 1,n-ADEQUATE experiment and the previously reported 1 H-detected version have been modified to incorporate J-modulation, making it feasible to acquire all 1,1- and 1,n-ADEQUATE correlations as well as 1 JCC and n JCC homonuclear scalar couplings in a single experiment. The experiments are demonstrated using N,N-dimethylamino-2,5,6-trifluoro-3,4-phthalonitrile and N,N-dimethylamino-3,4-phthalonitrile.

10.
Magn Reson Chem ; 61(1): 22-31, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36166190

RESUMEN

Chloride is the most common counterion used to improve aqueous solubility and enhance stability of small molecule active pharmaceutical ingredients. While several analytical techniques, such as titration, HPLC with charged aerosol detection, and ion chromatography, are currently utilized to assay the level of chloride, they have notable limitations, and these instruments may not be readily available. Here, we present a generally applicable 35 Cl solution NMR method to assay the level of chloride in pharmaceutical compounds. The method uses KClO4 as an internal standard for improved accuracy in comparison with external standard methods, and it was found to be robust, linear over three orders of magnitude, precise (<3% RSD), and accurate (<0.5% absolute error).


Asunto(s)
Cloruros , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética , Solubilidad , Preparaciones Farmacéuticas
11.
Phys Chem Chem Phys ; 24(34): 20164-20182, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35996986

RESUMEN

Prediction of anisotropic NMR data directly from solute-medium interaction is of significant theoretical and practical interest, particularly for structure elucidation, configurational analysis and conformational studies of complex organic molecules and natural products. Current prediction methods require an explicit structural model of the alignment medium: a requirement either impossible or impractical on a scale necessary for small organic molecules. Here we formulate a comprehensive mathematical framework for a parametrization protocol that deconvolutes an arbitrary surface of the medium into several simple local landscapes that are distributed over the medium's surface by specific orientational order parameters. The shapes and order parameters of these local landscapes are determined via fitting that maximizes the congruence between experimentally determined anisotropic NMR measurables and their predicted counterparts, thus avoiding the need for an a priori knowledge of the global medium morphology. This method achieves substantial improvements in the accuracy of predicted anisotropic NMR values compared to current methods, as demonstrated herein with sixteen natural products. Furthermore, because this formalism extracts structural commonalities of the medium by combining anisotropic NMR data from different compounds, its robustness and accuracy are expected to improve as more experimental data become available for further re-optimization of fitting parameters.


Asunto(s)
Productos Biológicos , Imagen por Resonancia Magnética , Anisotropía , Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Conformación Molecular
12.
J Nat Prod ; 85(6): 1449-1458, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35622967

RESUMEN

Aureobasidin A (abA) is a natural depsipeptide that inhibits inositol phosphorylceramide (IPC) synthases with significant broad-spectrum antifungal activity. abA is known to have two distinct conformations in solution corresponding to trans- and cis-proline (Pro) amide bond rotamers. While the trans-Pro conformation has been studied extensively, cis-Pro conformers have remained elusive. Conformational properties of cyclic peptides are known to strongly affect both potency and cell permeability, making a comprehensive characterization of abA conformation highly desirable. Here, we report a high-resolution 3D structure of the cis-Pro conformer of aureobasidin A elucidated for the first time using a recently developed NMR-driven computational approach. This approach utilizes ForceGen's advanced conformational sampling of cyclic peptides augmented by sparse distance and torsion angle constraints derived from NMR data. The obtained 3D conformational structure of cis-Pro abA has been validated using anisotropic residual dipolar coupling measurements. Support for the biological relevance of both the cis-Pro and trans-Pro abA configurations was obtained through molecular similarity experiments, which showed a significant 3D similarity between NMR-restrained abA conformational ensembles and another IPC synthase inhibitor, pleofungin A. Such ligand-based comparisons can further our understanding of the important steric and electrostatic characteristics of abA and can be utilized in the design of future therapeutics.


Asunto(s)
Depsipéptidos , Prolina , Depsipéptidos/farmacología , Péptidos Cíclicos/farmacología , Prolina/química , Conformación Proteica
13.
J Am Chem Soc ; 144(13): 5855-5863, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35333525

RESUMEN

As practitioners of organic chemistry strive to deliver efficient syntheses of the most complex natural products and drug candidates, further innovations in synthetic strategies are required to facilitate their efficient construction. These aspirational breakthroughs often go hand-in-hand with considerable reductions in cost and environmental impact. Enzyme-catalyzed reactions have become an impressive and necessary tool that offers benefits such as increased selectivity and waste limitation. These benefits are amplified when enzymatic processes are conducted in a cascade in combination with novel bond-forming strategies. In this article, we report a highly diastereoselective synthesis of MK-1454, a potent agonist of the stimulator of interferon gene (STING) signaling pathway. The synthesis begins with the asymmetric construction of two fluoride-bearing deoxynucleotides. The routes were designed for maximum convergency and selectivity, relying on the same benign electrophilic fluorinating reagent. From these complex subunits, four enzymes are used to construct the two bridging thiophosphates in a highly selective, high yielding cascade process. Critical to the success of this reaction was a thorough understanding of the role transition metals play in bond formation.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Catálisis
14.
Angew Chem Int Ed Engl ; 61(21): e202117655, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35139257

RESUMEN

At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE-Dt-mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension (1 D-UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H2 O and D2 O washes using an independent pump setup; and 3) a second dimension separation (2 D-UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90 % using as little as a few micrograms of material.


Asunto(s)
Productos Biológicos , Cromatografía Liquida , Espectroscopía de Resonancia Magnética , Solventes
15.
Magn Reson Chem ; 60(2): 210-220, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34469610

RESUMEN

Modification of the recently reported 19 F-detected 1,1-ADEQUATE experiment that incorporates dual-optimization to selectively invert a wide range of 1 JCC correlations in a 1,n-ADEQUATE experiment is reported. Parameters for the dual-optimization segment of the pulse sequence were modified to accommodate the increased size of 1 JCC homonuclear coupling constants of poly- and perfluorinated molecules relative to protonated molecules to allow broadband inversion of the 1 JCC correlations. The observation and utility of isotope shifts are reported for the first time for 1,1- and 1,n-ADEQUATE correlations.

16.
J Org Chem ; 87(4): 2055-2062, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-34590859

RESUMEN

A detailed mechanistic understanding of a benzylic photobromination en route to belzutifan (MK-6482, a small molecule for the treatment of renal cell carcinoma associated with von Hippel-Lindau syndrome) has been achieved using in situ LED-NMR spectroscopy in conjunction with kinetic analysis. Two distinct mechanisms of overbromination, namely, the ionic and radical pathways, have been revealed by this study. The behavior of the major reaction species, including reactants, intermediates, products, and side products, has been elucidated. Comprehensive understanding of both pathways informed and enabled mitigation of a major process risk: a sudden product decomposition. Detailed knowledge of the processes occurring during the reaction and their potential liabilities enabled the development of a robust photochemical continuous flow process implemented for commercial manufacturing.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Enfermedad de von Hippel-Lindau , Carcinoma de Células Renales/complicaciones , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/complicaciones , Neoplasias Renales/patología , Cinética , Espectroscopía de Resonancia Magnética , Enfermedad de von Hippel-Lindau/complicaciones
17.
Analyst ; 147(2): 325-332, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34927633

RESUMEN

Recent technological and synthetic advances have led to a resurgence in the exploration of peptides as potential therapeutics. Understanding peptide conformation in both free and protein-bound states remains one of the most critical areas for successful development of peptide drugs. In this study it was demonstrated that the combination of Size-Exclusion Chromatography with Hydrogen-Deuterium Exchange Mass Spectrometry (SEC-HDX-MS) and Circular Dichroism Spectroscopy (CD) can be used to guide the selection of peptides for further NMR analysis. Moreover, the insights from this workflow guide the choice of the best biologically relevant conditions for NMR conformational studies of peptide ligands in a free state in solution. Combined information about solution conformation character and stability across temperatures and co-solvent compositions greatly expedites selection of optimal conditions for NMR analysis. In total, the combination of SEC-HDX-MS, CD, and NMR into a single complementary workflow greatly accelerates conformational analysis of peptides in the drug discovery lead optimization process.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Dicroismo Circular , Péptidos , Conformación Proteica , Flujo de Trabajo
18.
J Med Chem ; 65(1): 485-496, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34931831

RESUMEN

Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Dolor/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/farmacología , Venenos de Araña/síntesis química , Animales , Degranulación de la Célula/efectos de los fármacos , Cistina/química , Diseño de Fármacos , Calor , Mastocitos/efectos de los fármacos , Modelos Moleculares , Dimensión del Dolor/efectos de los fármacos , Ratas , Venenos de Araña/farmacología
20.
Nucleic Acids Res ; 49(14): 7870-7883, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34283224

RESUMEN

Risdiplam is the first approved small-molecule splicing modulator for the treatment of spinal muscular atrophy (SMA). Previous studies demonstrated that risdiplam analogues have two separate binding sites in exon 7 of the SMN2 pre-mRNA: (i) the 5'-splice site and (ii) an upstream purine (GA)-rich binding site. Importantly, the sequence of this GA-rich binding site significantly enhanced the potency of risdiplam analogues. In this report, we unambiguously determined that a known risdiplam analogue, SMN-C2, binds to single-stranded GA-rich RNA in a sequence-specific manner. The minimum required binding sequence for SMN-C2 was identified as GAAGGAAGG. We performed all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method, which captured spontaneous binding of a risdiplam analogue to the target nucleic acids. We uncovered, for the first time, a ligand-binding pocket formed by two sequential GAAG loop-like structures. The simulation findings were highly consistent with experimental data obtained from saturation transfer difference (STD) NMR and structure-affinity-relationship studies of the risdiplam analogues. Together, these studies illuminate us to understand the molecular basis of single-stranded purine-rich RNA recognition by small-molecule splicing modulators with an unprecedented binding mode.


Asunto(s)
Compuestos Azo/metabolismo , Atrofia Muscular Espinal/genética , Pirimidinas/metabolismo , Precursores del ARN/genética , Empalme del ARN , Compuestos Azo/química , Compuestos Azo/uso terapéutico , Secuencia de Bases , Sitios de Unión/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Exones/genética , Cinética , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Estructura Molecular , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/metabolismo , Mutación , Fármacos Neuromusculares/química , Fármacos Neuromusculares/metabolismo , Fármacos Neuromusculares/uso terapéutico , Conformación de Ácido Nucleico , Pirimidinas/química , Pirimidinas/uso terapéutico , Precursores del ARN/química , Precursores del ARN/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA