Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 851(Pt 2): 158062, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35981579

RESUMEN

Understanding boreal/hemi-boreal forest growth sensitivity to seasonal variations in temperature and water availability provides important basis for projecting the potential impacts of climate change on the productivity of these ecosystems. Our best available information currently comes from a limited number of field experiments and terrestrial biosphere model (TBM) simulations of varying predictive accuracy. Here, we assessed the sensitivity of annual boreal/hemi-boreal forest growth in Canada to yearly fluctuations in seasonal climate variables using a large tree-ring dataset and compared this to the climate sensitivity of annual net primary productivity (NPP) estimates obtained from fourteen TBMs. We found that boreal/hemi-boreal forest growth sensitivity to fluctuations in seasonal temperature and precipitation variables changed along a southwestern to northeastern gradient, with growth limited almost entirely by temperature in the northeast and west and by water availability in the southwest. We also found a lag in growth climate sensitivity, with growth largely determined by the climate during the summer prior to ring formation. Analyses of NPP sensitivity to the same climate variables produced a similar southwest to northeast gradient in growth climate sensitivity for NPP estimates from all but three TBMs. However, analyses of growth from tree-ring data and analyses of NPP from TBMs produced contrasting evidence concerning the key climate variables limiting growth. While analyses of NPP primarily indicated a positive relationship between growth and seasonal temperature, tree-ring analyses indicated negative growth relationships to temperature. Also, the positive effect of precipitation on NPP derived from most TBMs was weaker than the positive effect of precipitation on tree-ring based growth: temperature had a more important limiting effect on NPP than tree-ring data indicated. These mismatches regarding the key climate variables limiting growth suggested that characterization of tree growth in TBMs might need revision, particularly regarding the effects of stomatal conductance and carbohydrate reserve dynamics.


Asunto(s)
Taiga , Árboles , Bosques , Ecosistema , Canadá , Cambio Climático , Agua , Carbohidratos
2.
Nature ; 591(7851): 599-603, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33762765

RESUMEN

Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.


Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono , Plantas/metabolismo , Suelo/química , Biomasa , Pradera , Modelos Biológicos
3.
Nature ; 571(7765): E8, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31249423

RESUMEN

In this Letter, a middle initial and additional affiliation have been added for author G. J. Nabuurs; two statements have been added to the Supplementary Acknowledgements; and a citation to the French National Institute has been added to the Methods; see accompanying Author Correction for further details.

4.
Nature ; 569(7756): 404-408, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31092941

RESUMEN

The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables-in particular, climatically controlled variation in the rate of decomposition-are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers-which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)-are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.


Asunto(s)
Clima , Bosques , Mapeo Geográfico , Micorrizas/fisiología , Simbiosis , Árboles/metabolismo , Árboles/microbiología , Fijación del Nitrógeno , Lluvia , Estaciones del Año
5.
Nature ; 540(7631): 104-108, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27905442

RESUMEN

The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.


Asunto(s)
Atmósfera/química , Ciclo del Carbono , Carbono/análisis , Geografía , Calentamiento Global , Suelo/química , Bases de Datos Factuales , Ecosistema , Retroalimentación , Modelos Estadísticos , Reproducibilidad de los Resultados , Temperatura
6.
Oecologia ; 170(1): 11-24, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22349756

RESUMEN

Spectra of leaf traits in northern temperate forest canopies reflect major differences in leaf longevity between evergreen conifers and deciduous broadleaf angiosperms, as well as plastic modifications caused by within-crown shading. We investigated (1) whether long-lived conifer leaves exhibit similar intra-canopy plasticity as short-lived broadleaves, and (2) whether global interspecific relationships between photosynthesis, nitrogen, and leaf structure identified for sun leaves adequately describe leaves differentiated in response to light gradients. We studied structural and photosynthetic properties of intra-tree sun and shade foliage in adult trees of seven conifer and four broadleaf angiosperm species in a common garden in Poland. Shade leaves exhibited lower leaf mass-per-area (LMA) than sun leaves; however, the relative difference was smaller in conifers than in broadleaves. In broadleaves, LMA was correlated with lamina thickness and tissue density, while in conifers, it was correlated with thickness but not density. In broadleaves, but not in conifers, reduction of lamina thickness was correlated with a thinner palisade layer. The more conservative adjustment of conifer leaves could result from a combination of phylogenetic constraints, contrasting leaf anatomies and shoot geometries, but also from functional requirements of long-lived foliage. Mass-based nitrogen concentration (N(mass)) was similar between sun and shade leaves, and was lower in conifers than in deciduous broadleaved species. Given this, the smaller LMA in shade corresponded with a lower area-based N concentration (N(area)). In evergreen conifers, LMA and N(area) were less powerful predictors of area-based photosynthetic rate (A (max(area))) in comparison with deciduous broadleaved angiosperms. Multiple regression for sun and shade leaves showed that, in each group, A (max(mass)) was related to N(mass) but not to LMA, whereas LMA became a significant codeterminant of A (max(mass)) in analysis combining both groups. Thus, a fundamental mass-based relationship between photosynthesis, nitrogen, and leaf structure reported previously also exists in a dataset combining within-crown and across-functional type variation.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Tracheophyta/fisiología , Adaptación Fisiológica , Luz , Filogenia , Polonia , Tracheophyta/crecimiento & desarrollo , Árboles
7.
Ecol Lett ; 14(8): 788-96, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21692962

RESUMEN

Understanding variation of plant nutrients is largely limited to nitrogen and to a lesser extent phosphorus. Here we analyse patterns of variation in 11 elements (nitrogen/phosphorus/potassium/calcium/magnesium/sulphur/silicon/iron/sodium/manganese/aluminium) in leaves of 1900 plant species across China. The concentrations of these elements show significant latitudinal and longitudinal trends, driven by significant influences of climate, soil and plant functional type. Precipitation explains more variation than temperature for all elements except phosphorus and aluminium, and the 11 elements differentiate in relation to climate, soil and functional type. Variability (assessed as the coefficient of variation) and environmental sensitivity (slope of responses to environmental gradients) are lowest for elements that are required in the highest concentrations, most abundant and most often limiting in nature (the Stability of Limiting Elements Hypothesis). Our findings can help initiate a more holistic approach to ecological plant nutrition and lay the groundwork for the eventual development of multiple element biogeochemical models.


Asunto(s)
Clima , Minerales/química , Hojas de la Planta/química , Suelo/química , China , Desarrollo de la Planta , Lluvia , Nieve
8.
Proc Natl Acad Sci U S A ; 107(52): 22722-7, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149696

RESUMEN

Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of xylem conduits from trunk to terminal twig, and how the frequency of xylem conduits varies with conduit radius. To test our predictions, we use comprehensive empirical measurements of maple, oak, and pine trees and complementary literature data that we obtained for a wide range of tree species. This robust intra- and interspecific assessment of our botanical network model indicates that the central tendency of observed scaling properties supports our predictions much better than the West, Brown, and Enquist (WBE) or pipe models. Consequently, our model is a more accurate description of vascular architecture than what is given by existing network models and should be used as a baseline to understand and to predict the scaling of individual plants to whole forests. In addition, our model is flexible enough to allow the quantification of species variation around rules for network design. These results suggest that the evolutionary drivers that we propose have been fundamental in determining how physiological processes scale within and across plant species.


Asunto(s)
Modelos Biológicos , Transpiración de Plantas/fisiología , Haz Vascular de Plantas/fisiología , Agua/metabolismo , Acer/fisiología , Algoritmos , Evolución Biológica , Transporte Biológico , Pinus/fisiología , Haz Vascular de Plantas/anatomía & histología , Quercus/fisiología , Especificidad de la Especie , Xilema/anatomía & histología , Xilema/fisiología
9.
Ecology ; 90(7): 1810-20, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19694130

RESUMEN

Plant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, U.S.A. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses: We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we caution against relying on them for predictive purposes without a mechanistic understanding of how resource availability and biotic interactions affect seed production.


Asunto(s)
Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Ecosistema , Nitrógeno/química , Nitrógeno/metabolismo , Semillas/fisiología , Lespedeza/metabolismo , Lupinus/metabolismo , Minnesota , Modelos Biológicos , Poaceae/metabolismo , Reproducción/fisiología , Suelo/análisis , Solidago/metabolismo
10.
Mycologia ; 101(4): 473-83, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19623927

RESUMEN

Oak savanna is one of the most endangered ecosystems of North America, with less than 0.02% of its original area remaining. Here we test whether oak savanna supports a unique community of ectomycorrhizal fungi, a higher diversity of ectomycorrhizal fungi or a greater proportional abundance of ascomycete fungi compared with adjacent areas where the absence of fire has resulted in oak savanna conversion to oak forest. The overall fungal community was highly diverse and dominated by Cenococcum geophilum and other ascomycetes, Cortinarius, Russula, Lactarius and Thelephoraceae. Oak savanna mycorrhizal communities were distinct from oak forest communities both aboveground (sporocarp surveys) and belowground (RFLP identification of ectomycorrhizal root tips); however total diversity was not higher in oak savanna than oak forests and there was no evidence of a greater abundance of ascomycetes. Despite not having a higher local diversity than oak forests, the presence of a unique fungal community indicates that oak savanna plays an important role in maintaining regional ectomycorrhizal diversity.


Asunto(s)
Ascomicetos/aislamiento & purificación , Micorrizas/aislamiento & purificación , Quercus/microbiología , Árboles/microbiología , Ascomicetos/genética , Biodiversidad , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Micorrizas/genética , América del Norte , Polimorfismo de Longitud del Fragmento de Restricción , Especificidad de la Especie
11.
New Phytol ; 181(1): 218-229, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18811616

RESUMEN

Temperature acclimation of respiration may contribute to climatic adaptation and thus differ among populations from contrasting climates. Short-term temperature responses of foliar dark respiration were measured in 33-yr-old trees of jack pine (Pinus banksiana) in eight populations of wide-ranging origin (44-55 degrees N) grown in a common garden at 46.7 degrees N. It was tested whether seasonal adjustments in respiration and population differences in this regard resulted from changes in base respiration rate at 5 degrees C (R(5)) or Q(10) (temperature sensitivity) and covaried with nitrogen and soluble sugars. In all populations, acclimation was manifest primarily through shifts in R(5) rather than altered Q(10). R(5) was higher in cooler periods in late autumn and winter and lower in spring and summer, inversely tracking variation in ambient air temperature. Overall, R(5) covaried with sugars and not with nitrogen. Although acclimation was comparable among all populations, the observed seasonal ranges in R(5) and Q(10) were greater in populations originating from warmer than from colder sites. Population differences in respiratory traits appeared associated with autumnal cold hardening. Common patterns of respiratory temperature acclimation among biogeographically diverse populations provide a basis for predicting respiratory carbon fluxes in a wide-ranging species.


Asunto(s)
Aclimatación/fisiología , Respiración de la Célula/fisiología , Pinus/fisiología , Clima , Minnesota , Pinus/metabolismo , Hojas de la Planta/fisiología , Temperatura
12.
Proc Natl Acad Sci U S A ; 105(49): 19336-41, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19052233

RESUMEN

The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO(2) uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO(2) uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle-climate models.


Asunto(s)
Carbono/metabolismo , Clima , Ecosistema , Nitrógeno/metabolismo , Árboles/metabolismo , Monitoreo del Ambiente/métodos , Retroalimentación , Modelos Biológicos , Hojas de la Planta/metabolismo , Nave Espacial , Temperatura
13.
Tree Physiol ; 28(5): 761-71, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18316308

RESUMEN

We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.


Asunto(s)
Luz , Hojas de la Planta/efectos de la radiación , Quercus/efectos de la radiación , Biomasa , Fotosíntesis/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Quercus/crecimiento & desarrollo , Quercus/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Factores de Tiempo
14.
Ecol Lett ; 11(6): 588-97, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18363717

RESUMEN

Tree growth and survival were assessed in 283 populations of Scots pine (Pinus sylvestris L.) originating from a broad geographic range and grown at 90 common-garden experimental sites across Europe, and in 101 populations grown at 14 sites in North America. Growth and survival were analysed in response to climatic transfer distance, the difference in mean annual temperature (MAT) between the site and the population origin. Differences among populations at each site, and across sites for regional groups of populations, were related to climate transfer distance, but in opposite ways in the northern vs. southern parts of the species range. Climate transfers equivalent to warming by 1-4 degrees C markedly increased the survival of populations in northern Europe (>or= 62 degrees N, < 2 degrees C MAT) and modestly increased height growth >or= 57 degrees N but decreased survival at < 62 degrees N and modestly decreased height growth at < 54 degrees N latitude in Europe. Thus, even modest climate warming will likely influence Scots pine survival and growth, but in distinct ways in different parts of the species range.


Asunto(s)
Clima , Efecto Invernadero , Pinus/crecimiento & desarrollo , Europa (Continente) , Geografía , Modelos Biológicos , América del Norte , Temperatura
15.
Microb Ecol ; 56(2): 332-40, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18095016

RESUMEN

Fungi play an important role in leaf litter decomposition due to their ability to break down the lignocellulose matrix, which other organisms are unable to digest. However, little is known regarding the factors affecting components of fungal diversity. Here, we quantified richness of internal fungi in relation to litter nutrient and phenolic concentrations, sampling season (spring or fall), and premature leaf shedding due to low precipitation and infestation of bark beetles (mainly Ips typographus and Ips duplicatus). The study was conducted in 37-year-old Norway spruce [Picea abies (L.) Karst.] stands, with three plots each in mixed forest (MF) and coniferous forest (CF) site conditions in south-central Poland. Fifty-four species of sporulating fungi were identified in 2,330 freshly fallen needles sampled during 2003-2005, including 45 species in MF and 31 in CF. The significantly higher number of species in MF was likely related to moister conditions at that site. Among isolated fungi, 22% (12 species) were identified as endophytes of Norway spruce in prior studies. During spring of 2005, we found less than half the number of isolates and fungal species at each forest site as compared to fall for the two prior years. This pattern was observed in typical soil fungi (e.g., Penicillium daleae, Penicillium purpurogenum) and endophytes/epiphytes (e.g., Aureobasidium pullulans, Alternaria alternata, Cladosporium spp., and Lophodermium piceae). Premature shedding of needles was the most likely cause of this decline because it shortened the time period for fungi to infect green needles while on the tree. For all sites and sampling periods, richness of internal fungi was strongly and positively related to the age of freshly fallen litter (assessed using needle Ca concentration as a needle age tracer) and was also negatively related to litter phenolic concentration. Richness of internal fungi in freshly fallen litter may be adversely affected by low soil moisture status, natural inhibitors slowing fungal colonization (e.g., phenolics) and biotic (e.g., insect infestation) and abiotic (e.g., drought) factors that shorten leaf life span.


Asunto(s)
Hongos/clasificación , Picea/microbiología , Corteza de la Planta/parasitología , Hojas de la Planta/microbiología , Gorgojos/fisiología , Animales , Hongos/aislamiento & purificación , Fenoles/análisis , Enfermedades de las Plantas/parasitología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Polonia , Estaciones del Año , Árboles , Gorgojos/clasificación
16.
Mycorrhiza ; 16(2): 73-79, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16322987

RESUMEN

Established vegetation can facilitate the ectomycorrhizal infection of seedlings, but it is not known whether this interaction is limited by the phylogenetic relatedness of trees and seedlings. We use a series of bioassay experiments to test whether soil modification by different ectomycorrhizal tree species causes different levels of seedling infection, whether the extent of seedling infection is a function of the relatedness of tree and seedling, and whether the effect of trees on seedlings is mediated by biotic or abiotic soil factors. We found that soils from under different tree species do vary in their mycorrhizal infectiveness. However, this variation is not related to the genetic relatedness of trees and seedlings but instead, appears to be an attribute of the overstory species, irrespective of seedling species, mediated through a suite of humus- and base-cation-related abiotic effects on soils. Modification of abiotic soil properties by overstory trees should be considered as an important factor in the effect of different overstory trees on the extent of seedling mycorrhizal infection.


Asunto(s)
Ecosistema , Micorrizas/fisiología , Pinus sylvestris/microbiología , Quercus/microbiología , Suelo , Pinus sylvestris/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Quercus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Especificidad de la Especie
17.
New Phytol ; 167(2): 493-508, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15998401

RESUMEN

Here, we tested hypothesized relationships among leaf and fine root traits of grass, forb, legume, and woody plant species of a savannah community. CO2 exchange rates, structural traits, chemistry, and longevity were measured in tissues of 39 species grown in long-term monocultures. Across species, respiration rates of leaves and fine roots exhibited a common regression relationship with tissue nitrogen (N) concentration, although legumes had lower rates at comparable N concentrations. Respiration rates and N concentration declined with increasing longevity of leaves and roots. Species rankings of leaf and fine-root N and longevity were correlated, but not specific leaf area and specific root length. The C3 and C4 grasses had lower N concentrations than forbs and legumes, but higher photosynthesis rates across a similar range of leaf N. Despite contrasting photosynthetic pathways and N2-fixing ability among these species, concordance in above- and below-ground traits was evident in comparable rankings in leaf and root longevity, N and respiration rates, which is evidence of a common leaf and root trait syndrome linking traits to effects on plant and ecosystem processes.


Asunto(s)
Plantas/anatomía & histología , Plantas/metabolismo , Poaceae/anatomía & histología , Poaceae/metabolismo , Dióxido de Carbono/metabolismo , Clima , Ecosistema , Fabaceae/anatomía & histología , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Nitrógeno/metabolismo , Desarrollo de la Planta , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Poaceae/crecimiento & desarrollo
18.
Oecologia ; 136(2): 220-35, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12756524

RESUMEN

Nutrient availability varies across climatic gradients, yet intraspecific adaptation across such gradients in plant traits related to internal cycling and nutrient resorption remains poorly understood. We examined nutrient resorption among six Scots pine (Pinus sylvestris L.) populations of wide-ranging origin grown under common-garden conditions in Poland. These results were compared with mass-based needle N and P for 195 Scots pine stands throughout the species' European range. At the common site, green needle N (r(2)=0.81, P=0.01) and P (r(2)=0.58, P=0.08) concentration increased with increasing latitude of population origin. Resorption efficiency (the proportion of the leaf nutrient pool resorbed during senescence) of N and P of Scots pine populations increased with the latitude of seed origin (r(2) > or = 0.67, P < or = 0.05). The greater resorption efficiency of more northerly populations led to lower concentrations of N and P in senescent leaves (higher resorption proficiency) than populations originating from low latitudes. The direction of change in these traits indicates potential adaptation of populations from northern, colder habitats to more efficient internal nutrient cycling. For native Scots pine stands, results showed greater nutrient conservation in situ in cold-adapted northern populations, via extended needle longevity (from 2 to 3 years at 50 degrees N to 7 years at 70 degrees N), and greater resorption efficiency and proficiency, with their greater resorption efficiency and proficiency having genotypic roots demonstrated in the common-garden experiment. However, for native Scots pine stands, green needle N decreased with increasing latitude (r(2)=0.83, P=0.0002), and P was stable other than decreasing above 62 degrees N. Hence, the genotypic tendency towards maintenance of higher nutrient concentrations in green foliage and effective nutrient resorption, demonstrated by northern populations in the common garden, did not entirely compensate for presumed nutrient availability limitations along the in situ latitudinal temperature gradient.


Asunto(s)
Clima , Nitrógeno/metabolismo , Fósforo/metabolismo , Pinus/fisiología , Adaptación Fisiológica , Genotipo , Pinus/crecimiento & desarrollo , Hojas de la Planta/química , Polonia
19.
Science ; 294(5543): 843-5, 2001 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-11679667

RESUMEN

Plant diversity and niche complementarity had progressively stronger effects on ecosystem functioning during a 7-year experiment, with 16-species plots attaining 2.7 times greater biomass than monocultures. Diversity effects were neither transients nor explained solely by a few productive or unviable species. Rather, many higher-diversity plots outperformed the best monoculture. These results help resolve debate over biodiversity and ecosystem functioning, show effects at higher than expected diversity levels, and demonstrate, for these ecosystems, that even the best-chosen monocultures cannot achieve greater productivity or carbon stores than higher-diversity sites.


Asunto(s)
Biomasa , Ecosistema , Desarrollo de la Planta , Poaceae/crecimiento & desarrollo , Análisis de Varianza , Fabaceae/crecimiento & desarrollo , Minnesota , Análisis de Regresión , Estaciones del Año
20.
Nature ; 410(6830): 809-12, 2001 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-11298447

RESUMEN

Human actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively, which might be particularly important in the face of other global changes. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 micromol mol-1, versus elevated, 560 micromol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Nitrógeno/metabolismo , Plantas/metabolismo , Atmósfera , Biomasa , Minnesota , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...