Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 204: 116520, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815472

RESUMEN

Metal and organic pollutants are prominent marine contaminants that disperse widely throughout the environment. Some contaminants biomagnify, leaving long-lived apex predators such as cetaceans at risk of toxicity. Various tissues collected post-mortem from 16 Ziphiidae individuals that stranded on the New South Wales (NSW) coast, Australia, over ∼15 years were investigated for 16 metals/metalloids and 33 organic contaminants. Polychlorinated biphenyls (PCBs) and Dichlorodiphenyltrichloroethanes (DDTs) were commonly detected in blubber and liver tissues. Mercury, cadmium and silver exceeded reported toxicity thresholds in several individuals. The liver tissue of a Mesoplodon layardii specimen had the highest mercury (386 mg/kg dry weight). Liver tissue of a Mesoplodon grayi specimen had the highest silver concentration (19.7 mg/kg dry weight), and the highest cadmium concentration was in Ziphius cavirostris kidney (478 mg/kg dry weight). This study provides important new information for rare Ziphiidae species globally.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Animales , Nueva Gales del Sur , Contaminantes Químicos del Agua/análisis , Bifenilos Policlorados/análisis , Ballenas , Hígado/química , Metales/análisis
2.
Mar Pollut Bull ; 199: 116047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237248

RESUMEN

Coastal cinnabar mining commenced in 2010 around Luhu on Seram (Ceram) Island, Indonesia. This study investigates the ore characteristics and environmental distribution and bioavailability of mercury in coastal sediments from eight sites adjacent to, and north and south of the mining area. Sediment and ore samples were digested using 1:3 HNO3:HCl for total extractable metal determination and separate samples were extracted with 1.0 HCl for bioavailable metals (Hg, Cu, Zn, Cr, Ni and Pb). Analysis was completed using inductively coupled plasma-mass spectrometry. Ore defined by miners as 'first class ore' was around 50 % cinnabar. Mercury concentrations were extremely elevated in near coastal sediments (up to 2796 mg/kg) with bioavailable concentrations exceeding 450 mg/kg. Marine sediments elevated in mercury extend to the north and south of the coastal mine site and cover in excess of 14 km. Total organic carbon in marine sediments was relatively low (predominately <0.6 %) suggesting mercury methylation will likely be slow, however, inorganic mercury is a known toxicant. Other metals of environmental concern (Cu, Zn, Cr, Ni and Pb) in sediments were not strongly associated with the mining operations, rather were elevated around coastal villages, but not at concentrations that raise immediate concerns.


Asunto(s)
Compuestos de Mercurio , Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Mercurio/análisis , Disponibilidad Biológica , Plomo/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente , Medición de Riesgo , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
3.
Environ Pollut ; 342: 123084, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065335

RESUMEN

Monitoring pesticide run-off in the aquatic environment is ecologically important. Effective methods are required to detect the wide range of possible pesticides that enter estuaries from the surrounding catchment. Here, we investigate the occurrence of pesticides in the Richmond River estuary, Australia, and compare the effectiveness of using oysters and Chemcatcher® passive sampling devices against composite water samples. Samples were collected from six sites during two sampling periods: from January to March 2020 (4 weekly composite water samples and oyster collections) and from February to March 2021 (8 twice weekly composite water samples and Chemcatcher® deployment). Samples were analysed for up to 174 pesticides. A total of 21 pesticides were detected across all sites using all methods. The number of pesticides and mixture of pesticides detected in the 2020 sampling was higher in oyster samples than in water samples. In 2021, Chemcatcher® samplers detected more pesticides than in water samples. Herbicides were the most common in all samples. Insecticides and most fungicides were detected only in oysters and Chemcatcher®. Overall, the use of three complementary sampling approaches demonstrated a high level of pesticide input into the Richmond River estuary, highlighting the usefulness of oysters as biomonitors for some pesticides.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/análisis , Estuarios , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Ríos , Agua/análisis , Australia
4.
Mar Pollut Bull ; 194(Pt B): 115242, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453169

RESUMEN

Adult corals are among the most sensitive marine organisms to dissolved manganese and experience tissue sloughing without bleaching (i.e., no loss of Symbiodinium spp.) but there are no chronic toxicity data for this sensitive endpoint. We exposed adult Acropora millepora to manganese in 2-d acute and 14-d chronic experiments using tissue sloughing as the toxicity endpoint. The acute tissue sloughing median effect concentration (EC50) was 2560 µg Mn/L. There was no chronic toxicity to A. millepora at concentrations up to and including the highest concentration of 1090 µg Mn/L i.e., the chronic no observed effect concentration (NOEC). A coral-specific acute-to-chronic ratio (ACR) (EC50/NOEC) of 2.3 was derived. These data were combined with chronic toxicity data for other marine organisms in a species sensitivity distribution (SSD). Marine manganese guidelines were 190, 300, 390 and 570 µg Mn/L to provide long-term protection of 99, 95, 90, and 80 % of marine species, respectively.


Asunto(s)
Antozoos , Dinoflagelados , Contaminantes Químicos del Agua , Animales , Manganeso/toxicidad , Calidad del Agua , Organismos Acuáticos , Contaminantes Químicos del Agua/toxicidad
5.
Environ Toxicol Chem ; 42(6): 1359-1370, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946339

RESUMEN

Manganese (Mn) is an essential element and is generally considered to be one of the least toxic metals to aquatic organisms, with chronic effects rarely seen at concentrations below 1000 µg/L. Anthropogenic activities lead to elevated concentrations of Mn in tropical marine waters. Limited data suggest that Mn is more acutely toxic to adults than to early life stages of scleractinian corals in static renewal tests. However, to enable the inclusion of sufficient sensitive coral data in species sensitivity distributions to derive water quality guideline values for Mn, we determined the acute toxicity of Mn to the adult scleractinian coral, Acropora muricata, in flow-through exposures. The 48-h median effective concentration was 824 µg Mn/L (based on time-weighted average, measured, dissolved Mn). The endpoint was tissue sloughing, a lethal process by which coral tissue detaches from the coral skeleton. Tissue sloughing was unrelated to superoxidase dismutase activity in coral tissue, and occurred in the absence of bleaching, that is, toxic effects were observed for the coral host, but not for algal symbionts. We confirm that adult scleractinian corals are uniquely sensitive to Mn in acute exposures at concentrations 10-340 times lower than those reported to cause acute or chronic toxicity to coral early life stages, challenging the traditional notion that early life stages are more sensitive than mature organisms. Environ Toxicol Chem 2023;42:1359-1370. © 2023 Commonwealth Scientific and Industrial Research Organisation. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Antozoos , Animales , Manganeso/toxicidad , Calidad del Agua , Arrecifes de Coral
6.
Environ Toxicol Chem ; 42(2): 303-316, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416265

RESUMEN

The toxicity of iron(III) in fresh waters has been detected at concentrations above the iron solubility limit, indicating a contribution of colloidal and particulate forms of iron(III) to the toxicity response. Current water quality guideline values for iron in fresh water are based on analytical determinations of filterable or total iron. Filtration, however, can underestimate bioavailable iron by retaining some of the colloidal fraction, and total determinations overestimate bioavailable iron measurements by recovering fractions of low bioavailability from suspended solids (e.g., iron oxides and oxyhydroxides) naturally abundant in many surface waters. Consequently, there is a need for an analytical method that permits the determination of a bioavailable iron fraction, while avoiding false-negative and false-positive results. Ideally, a measurement technique is required that can be readily applied by commercial laboratories and field sampling personnel, and integrated into established regulatory schemes. The present study investigated the performance of pH 2 and pH 4 extractions to estimate a bioavailable iron(III) fraction in synthetic water samples containing iron phases of different reactivities. The effects of aging on fresh precipitates were also studied. The total recoverable, 0.45-µm filtered, and pH 4 extractable fractions did not discriminate iron phases and age groups satisfactorily. Contrastingly, the pH 2 extraction showed specificity toward iron phases and aging (0.5-2-h interval). Extraction times above 4 h and up to 16 h equally recovered >90% of the spiked iron regardless of its age. Furthermore, <1% of the well-mineralized iron was targeted. The present study shows that a pH 2 dilute-acid extraction is a suitable candidate method to operationally define iron fractions of higher bioavailability avoiding false-negative and false-positive results. Environ Toxicol Chem 2023;42:303-316. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Compuestos Férricos , Disponibilidad Biológica , Agua Dulce , Calidad del Agua , Contaminantes Químicos del Agua/toxicidad
7.
Mar Pollut Bull ; 184: 114177, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36191472

RESUMEN

This study investigated relationships between Sydney Rock Oyster (SRO) health and element concentrations in sediments and oysters from the Richmond River estuary. Six sites were sampled between November 2019 and May 2020. Multivariate permutational analysis of variance was used to compare oyster health parameters and element concentrations between sites, wet and dry conditions, and in oyster and sediment samples. Statistical analysis revealed significant spatial differences in oyster mortality, condition index, and size. Metal concentrations in oyster flesh significantly differed from metals in sediments. Most metals in sediments were below guideline values, except for Ni at some sites. Mortality, condition index, and weight correlated negatively with individual elements in oyster flesh (P, Zn, Mg, Al, Ni). BEST statistical models included various combinations of metals in sediment and flesh. This study highlights that spatial differences in SRO health tend to be related to site-specific metal compositions in sediment and oysters.


Asunto(s)
Metales Pesados , Ostreidae , Contaminantes Químicos del Agua , Animales , Estuarios , Ríos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Metales/análisis , Australia , Sedimentos Geológicos , Metales Pesados/análisis
8.
Environ Pollut ; 313: 120110, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36075335

RESUMEN

Nickel (Ni) and manganese (Mn) are well known for the production of steel and alloys and are commonly found co-occurring in Ni ores. They are metals of environmental concern and contamination in the marine environment is problematic single exposures and in combination. Several studies have documented the effects of single metal exposure on the model anemone E. pallida, but research on the effects of metal mixtures is far less common. This novel study assesses the accumulation and stress effects of Ni and Mn over a 12-d exposure period. E. pallida were exposed in two separate experiments; Ni alone and Ni in combination with Mn, to assess accumulation, along with any effect on the density of symbionts and anemone tentacle length. Anemones were transferred to ambient seawater to assess depuration and recovery over 6 d. Anemone tissue accumulated Ni at a magnitude of five times higher in a mixture of 0.5 mg Ni/L with 2.5 mg Mn/L compared to the same concentration in a single Ni exposure experiment. In both experiments, Ni and Mn preferentially accumulated in the Symbiodinium spp. compared to the anemone tissue, but Ni depuration was more rapid in the mixture than Ni alone exposure. This study reveals a significant reduction in anemone Symbiodinium spp. density after exposure to Ni and Mn mixtures, but not with Ni exposure alone. A significant dose-dependent reduction in tentacle length was observed in anemones after 12 d of the Ni exposure both with and without Mn. The estimated sublethal concentration that causes tentacle retraction in 50% of test anemones (EC50) by Ni was 0.51 (0.25-0.73) mg/L, while in combination with Mn the EC50 was 0.30 mg Ni/L (confidence limits not calculatable). The present data reveals the importance of testing metal effects in combination before establishing safe limits for marine invertebrates.


Asunto(s)
Dinoflagelados , Anémonas de Mar , Contaminantes Químicos del Agua , Aleaciones/farmacología , Animales , Cobre/farmacología , Iones/farmacología , Manganeso/toxicidad , Níquel/toxicidad , Acero , Contaminantes Químicos del Agua/toxicidad
9.
Sci Total Environ ; 845: 157311, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839877

RESUMEN

Deep-sea tailings placement (DSTP) involves the oceanic discharge of tailings at depth (usually >100 m), with the intent of ultimate deposition of tailings solids on the deep-sea bed (>1000 m), well below the euphotic zone. DSTP discharges consist of a slurry of mine tailings solids (finely crushed rock) and residual process liquor containing low concentrations of metals, metalloids, flotation agents and flocculants. This slurry can potentially affect both pelagic and benthic biota inhabiting coastal waters, the continental slope and the deep-sea bed. Building on a conceptual model of DSTP exposure pathways and receptors, we developed a stressor-driven environmental risk assessment (ERA) framework using causal pathways/causal networks for each of eight pelagic and benthic impact zones. For the risk characterisation, each link in each causal pathway in each zone was scored using four levels of likelihood (not possible, possible, likely and certain) and two levels of consequence (not material, material) to give final risk rankings of low, potential, high or very high risk. Of the 246 individual causal pathways scored, 11 and 18 pathways were considered to be of very high risk and high risk respectively. These were confined to the benthic zones in the mixing zone (continental slope) and the primary and secondary deposition zones. The new risk framework was then tested using a case study of the Batu Hijau copper mine in Indonesia, the largest DSTP operation globally. The major risk of DSTP is smothering of benthic biota, even outside the predicted deposition zones. Timescales for recovery are slow and may lead to different communities than those that existed prior to tailings deposition. We make several recommendations for monitoring programs for existing, proposed and legacy DSTP operations and illustrate how georeferenced causal networks are valuable tools for ERA in DSTP.


Asunto(s)
Sedimentos Geológicos , Minería , Monitoreo del Ambiente , Metales/análisis , Océanos y Mares , Medición de Riesgo
10.
Chemosphere ; 295: 133895, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35143868

RESUMEN

Manganese (Mn) is essential for global steel and Mn-iron (Fe) alloy production. The human health effects of elevated Mn concentrations have been well established, but studies on its impact on marine invertebrates are limited. This study is the first to investigate Mn uptake in the sea anemone Exaiptasia pallida after chronic exposure (0.5, 1, 10, and 100 mg/L) for 24-d. Following exposure, E. pallida were transferred to ambient seawater for 6-d to assess Mn depuration. Mn accumulation and partitioning in host tissue and symbionts (Symbiodinium spp.), tentacle retraction, and symbiont cell density were measured during exposure and depuration. Mn concentrations were substantially higher in symbionts than tissue in all treatments after 24-d. No significant difference was observed for symbiont cell density after Mn exposure. Tentacle retractions were significantly higher in all Mn exposed treatments than controls at all time points. Mn depuration was observed for both tissue and symbionts but was more rapid in symbionts. This study reveals that Symbiodinium spp. can play a role in Mn uptake and depuration in anemones, but Mn loading does not affect cell density. These results help understand metal uptake and depuration in complex relationships between Symbiodinium spp. and other host taxa like corals.


Asunto(s)
Antozoos , Dinoflagelados , Anémonas de Mar , Animales , Manganeso/farmacología , Simbiosis
11.
Integr Environ Assess Manag ; 18(3): 664-673, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34396697

RESUMEN

Deep-sea mineral extraction is a fledgling industry whose guiding principles, legislation, protocols, and regulations are still evolving. Responsible management of the industry is difficult when it is not clearly understood what biological and environmental diversity or ecosystem services may be at risk. But the industry's infancy provides an opportunity to address this challenge by stakeholder-led development and implementation of a multidisciplinary risk assessment framework. This article aims to present the findings of a workshop held in New Zealand that hosted stakeholders from a broad range of interests and regions in the South Pacific associated with the deep-sea mineral activity. The outputs provide stakeholder-informed ecological risk assessment approaches for deep-sea mining activities, identifying tools and techniques to improve the relevance of risk assessment of deep seabed mining projects to communities in the South Pacific. Discussions highlighted the importance of trust or respect among stakeholders, valuing the "life force" of the ocean, the importance of scientific data, and the complications associated with defining acceptable change. This research highlighted the need for a holistic transdisciplinary approach that connects science, management, industry, and community, an approach most likely to provide a "social license" to operate. There is also a need to revise traditional risk assessment methods to make them more relevant to stakeholders. The development of ecotoxicological tools and approaches is an example of how existing practices could be improved to better support deep-sea mineral management. A case study is provided that highlights the current challenges within the legislative framework of New Zealand. Integr Environ Assess Manag 2022;18:664-673. © 2021 SETAC.


Asunto(s)
Ecosistema , Minería , Ecotoxicología , Minerales , Medición de Riesgo
12.
Toxics ; 9(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499264

RESUMEN

The broad utilisation of neonicotinoids in agriculture has led to the unplanned contamination of adjacent terrestrial and aquatic systems around the world. Environmental monitoring regularly detects neonicotinoids at concentrations that may cause negative impacts on molluscs. The toxicity of neonicotinoids to some non-target invertebrates has been established; however, information on mollusc species is limited. Molluscs are likely to be exposed to various concentrations of neonicotinoids in the soil, food and water, which could increase their vulnerability to other sources of mortality and cause accidental exposure of other organisms higher in the food chain. This review examines the impacts of various concentrations of neonicotinoids on molluscs, including behavioural, physiological and biochemical responses. The review also identifies knowledge gaps and provides recommendations for future studies, to ensure a more comprehensive understanding of impacts from neonicotinoid exposure to molluscs.

13.
Integr Environ Assess Manag ; 17(4): 802-813, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33404201

RESUMEN

Nickel laterite ore deposits are becoming increasingly important sources of Ni for the global marketplace and are found mainly in tropical and subtropical regions, including Indonesia, the Philippines, Papua New Guinea, Cuba, and New Caledonia. There are few legislatively derived standards or guidelines for the protection of aquatic life for Ni in many of these tropical regions, and bioavailability-based environmental risk assessment (ERA) approaches for metals have mainly been developed and tested in temperate regions, such as the United States and Europe. This paper reports on a multi-institutional, 5-y testing program to evaluate Ni exposure, effects, and risk characterization in the Southeast Asia and Melanesia (SEAM) region, which includes New Caledonia, Papua New Guinea, the Philippines, and Indonesia. Further, we have developed an approach to determine if the individual components of classical ERA, including effects assessments, exposure assessments, and risk characterization methodologies (which include bioavailability normalization), are applicable in this region. A main conclusion of this research program is that although ecosystems and exposures may be different in tropical systems, ERA paradigms are constant. A large chronic ecotoxicity data set for Ni is now available for tropical species, and the data developed suggest that tropical ecosystems are not uniquely sensitive to Ni exposure; hence, scientific support exists for combining tropical and temperate data sets to develop tropical environmental quality standards (EQSs). The generic tropical database and tropical exposure scenarios generated can be used as a starting point to examine the unique biotic and abiotic characteristics of specific tropical ecosystems in the SEAM region. Integr Environ Assess Manag 2021;17:802-813. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Níquel , Contaminantes Químicos del Agua , Asia Sudoriental , Disponibilidad Biológica , Ecosistema , Europa (Continente) , Agua Dulce , Melanesia , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 742: 140538, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32634691

RESUMEN

The broad utilisation of neonicotinoids, particularly imidacloprid (IMI), in agriculture has led to unplanned contamination of aquatic systems around the world. The sublethal effects of individual pesticides on the immune system of oysters, as well as their combined effects with other environmental stressors that fluctuate in estuarine environments, such as salinity, are yet to be investigated in ecotoxicology. We investigated the acute (4 d) toxicity of IMI in two salinity regimes on the immune parameters of Sydney rock oysters (SRO), including total hemocyte counts (THC), differential hemocyte counts (DHC), phagocytosis and hemocyte aggregation (HA), hemolymph protein expression and enzyme (catalase (CAT), glutathione S-transferase (GST) and acetylcholinesterase (AChE)) activities. Environmentally relevant concentrations of IMI were found to cause an increase in THC, induce GST activity, reduce HA, and inhibit AChE activity. However, DHC, CAT activity and phagocytosis were not significantly impacted at any test concentration at either salinity. IMI concentrations ≥0.01 mg/L significantly altered the expression of 28 proteins in the hemolymph of SRO, including an increase in the relative expression of extracellular superoxide dismutase, severin, ATP synthase subunit beta, as well as stress response proteins (heat shock proteins, serine/threonine-protein kinase DCLK3 and peroxiredoxin-1), and a decrease/absence of collagen alpha-4 (VI) and alpha-6 (VI) chain, metalloendopeptidase, L-ascorbate oxidase, transporter, CEP209_CC5 domain-containing protein and actin. This study indicates that the immune system of SRO can be impacted at environmentally relevant concentrations of IMI, but reduced salinity does not appear to influence the toxicity of this insecticide.


Asunto(s)
Insecticidas , Ostreidae , Animales , Sistema Inmunológico , Neonicotinoides , Nitrocompuestos , Salinidad
15.
Chemosphere ; 257: 127240, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32516670

RESUMEN

Exaiptasia pallida has been applied as a cnidarian model to assess the toxicity of various contaminants using endpoints related to growth, reproduction and mortality. However, increasingly accepted behavioural and biochemical endpoints are underrepresented in ecotoxicity testing with cnidarian species. The aim of this study was to assess the suitability of tentacle retraction and superoxide dismutase activity as behavioural and biochemical endpoints for ecotoxicity testing with E. pallida. A concentration-dependent, tentacle retraction response was found in sub-lethal toxicity testing for anemones exposed to 1-65 µg L-1 Cu and 2-630 µg L-1 Zn for 24 and 96 h. Semi-quantitative and quantitative approaches to tentacle retraction analysis showed a difference in response sensitivity, however, both methods resulted in similar 24- and 96-h EC50 values for Cu and Zn. Additionally, tentacle retraction analysis provided the benefit of identifying recovery in anemones previously exposed to 359 µg L-1 Zn following a 96-h recovery period. Conversely, no significant difference in superoxide dismutase activity was detected in anemones exposed to the Cu and Zn solutions compared with controls, after either 24- or 96-h exposures. These findings support the ease of application and sensitivity of tentacle retraction as an endpoint in ecotoxicity testing with E. pallida and recommend its suitability for use in acute, sub-lethal toxicity testing. Moreover, evidence of recovery in E. pallida following exposure suggests that recovery should be incorporated into future toxicity assessments.


Asunto(s)
Anémonas de Mar/fisiología , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/toxicidad , Animales , Cobre/toxicidad , Anémonas de Mar/crecimiento & desarrollo
16.
Mar Pollut Bull ; 152: 110886, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32479277

RESUMEN

Intensification of lateritic nickel mining in Southeast Asia and Melanesia potentially threatens coastal ecosystems from increased exposure to nickel and suspended sediment. This study investigated the response of Acropora muricata when exposed to either dissolved nickel, clean suspended sediment or nickel-contaminated suspended sediment for 7 days, followed by a 7-d recovery period. Significant bleaching and accumulation of nickel in coral tissue was observed only after exposure to high dissolved nickel concentrations and nickel-spiked suspended sediment. No effect on A. muricata was observed from exposure to a particulate-bound nickel concentration of 60 mg/kg acid-extractable nickel at a suspended sediment concentration of 30 mg/L TSS. This study demonstrates that bioavailability of nickel associated with suspended sediment exposure plays a key role in influencing nickel toxicity to corals. These findings assist in assessments of risk posed by increasing nickel mining activities on tropical marine ecosystems.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Sedimentos Geológicos , Melanesia , Minería , Níquel
17.
Mar Environ Res ; 151: 104765, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31353171

RESUMEN

The use of imidacloprid (IMI) and its formulated products in agriculture is a risk to aquatic organisms due to deposition into waterways from runoff and aerial spraying. However, there is limited information on the potential effects of this pesticide on commercially important shellfish, such as oysters. We investigated the impacts of IMI and Spectrum 200SC (IMI formulation) on the activity of the enzymes Glutathione-S-transferase (GST), Catalase (CAT) and Acetylcholinesterase (AChE), in different oyster tissues including the gill, adductor muscle and digestive gland. We also investigated the condition index and fatty acid composition of the flesh of oysters after 2 weeks exposure. The concentrations of IMI in the different tissues was assessed using Liquid Chromatography-Mass Spectrometry (LC-MS) after QuEChERS extraction. Higher concentrations of IMI residues were detected in the adductor muscle of the oysters, followed by the gills and with the lowest amounts recovered from the digestive gland across all the concentrations tested. IMI and Spectrum 200SC significantly affected the gill AChE activity at 2 mg/L, but digestive gland CAT, and gill and digestive gland GST were impacted at environmentally relevant concentrations (0.01 and 0.05 mg/L). In the whole oyster, 2 weeks exposure to IMI (≥0.01 mg/L) resulted in a proportional increase in saturated fatty acids (SFA), altered the polyunsaturated fatty acid (PUFA) to SFA ratio and altered the omega 3 fatty acids (n-3) to omega 6 fatty acids (n-6) ratio, but there were no effects on the condition index of the oyster. Although the oysters responded differently to the formulated product, there was no consistent difference in the sublethal effects of analytical IMI and Spectrum 200SC. This study showed that exposure to IMI and Spectrum 200SC can significantly affect the biochemical processes and metabolites in oysters, with implications for food quality and safety.


Asunto(s)
Agroquímicos/toxicidad , Ácidos Grasos , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Ostreidae , Contaminantes Químicos del Agua/toxicidad , Animales , Ostreidae/efectos de los fármacos , Ostreidae/fisiología
18.
Environ Pollut ; 250: 792-806, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31042619

RESUMEN

The potential impacts of mining activities on tropical coastal ecosystems are poorly understood. In particular, limited information is available on the effects of metals on scleractinian corals which are foundation species that form vital structural habitats supporting other biota. This study investigated the effects of dissolved nickel and copper on the coral Acropora muricata and its associated microbiota. Corals collected from the Great Barrier Reef were exposed to dissolved nickel (45, 90, 470, 900 and 9050 µg Ni/L) or copper (4, 11, 32 and 65 µg Cu/L) in flow through chambers at the National Sea Simulator, Townsville, Qld, Australia. After a 96-h exposure DNA metabarcoding (16S rDNA and 18S rDNA) was undertaken on all samples to detect changes in the structure of the coral microbiome. The controls remained healthy throughout the study period. After 36 h, bleaching was only observed in corals exposed to 32 and 65 µg Cu/L and very high nickel concentrations (9050 µg Ni/L). At 96 h, significant discolouration of corals was only observed in 470 and 900 µg Ni/L treatments, the highest concentrations tested. While high concentrations of nickel caused bleaching, no changes in the composition of their microbiome communities were observed. In contrast, exposure to copper not only resulted in bleaching, but altered the composition of both the eukaryote and bacterial communities of the coral's microbiomes. Our findings showed that these effects were only evident at relatively high concentrations of nickel and copper, reflecting concentrations observed only in extremely polluted environments. Elevated metal concentrations have the capacity to alter the microbiomes which are inherently linked to coral health.


Asunto(s)
Antozoos/efectos de los fármacos , Cobre/toxicidad , Microbiota/efectos de los fármacos , Níquel/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Antozoos/microbiología , Australia , Arrecifes de Coral , Relación Dosis-Respuesta a Droga , Minería , Modelos Teóricos , Solubilidad , Clima Tropical
19.
Chemosphere ; 230: 1-13, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31100675

RESUMEN

The broad utilisation of imidacloprid (IMI) in agriculture poses an increasing risk to aquatic organisms. However, the potential impacts on commercially important shellfish and chemical residues after exposure, are yet to be assessed. We investigated the levels of IMI in Sydney rock oyster (SRO) tissue during a three-day uptake and four-day depuration cycle using liquid chromatography-mass spectrometry. IMI was absorbed from the water, with significantly higher concentrations in the adductor muscles than the gills and digestive glands. Depuration was also fast with a significant drop in tissue concentrations after one day in clean water and complete elimination from all tissues except the digestive gland after four days. The distribution of IMI in SRO after direct exposure using mass spectrometry imaging demonstrated uptake and spatially resolved metabolism to hydroxyl-IMI in the digestive gland and IMI-olefin in the gills. We assessed the effects of IMI on filtration rate (FR), acetylcholinesterase (AChE) activity in the gills, and gene expression profiles in the digestive gland using transcriptomics. Exposure to 2 mg/L IMI reduced the FR of oysters on the first day, while exposure to 0.5 and 1 mg/L reduced FR on day four. IMI reduced the gill AChE activity and altered the digestive gland gene expression profile. This study indicates that commercially farmed SRO can uptake IMI from the water, but negative impacts were only detected at concentrations higher than currently detected in estuarine environments and the chemical residues can be effectively eliminated using simple depuration in clean water.


Asunto(s)
Acetilcolinesterasa/metabolismo , Branquias/metabolismo , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Ostreidae/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/metabolismo , Sistema Digestivo/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Insecticidas/farmacocinética , Neonicotinoides/farmacocinética , Nitrocompuestos/farmacocinética , Contaminantes Químicos del Agua/farmacocinética , Purificación del Agua
20.
Ecotoxicol Environ Saf ; 167: 83-94, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30312889

RESUMEN

Manganese (Mn) pollution in marine waters is increasing and sensitivities to this metal vary widely among marine species. The aims of this study were to characterise Mn chemistry in seawater, and evaluate the toxic effects of Mn on various life stages of two scleractinian corals - the branching sp. Acropora spathulata and massive sp. Platygyra daedalea, and the anemone Exaiptasia pallida. Analytical and theoretical characterisation experiments showed that 97-100% of Mn (II) additions ≤ 200 mg/L in seawater were soluble over 72 h and largely assumed labile complexes. Concentrations estimated to reduce coral fertilisation success by 50% (5.5-h EC50) were 237 mg/L for A. spathulata and 164 mg/L for P. daedalea. A relatively low 72-h LC50 of 7 mg/L was calculated for A. spathulata larvae. In a pilot test using fragments of adult A. spathulata, intact coral tissue rapidly sloughed away from the underlying skeleton at very low concentrations with a 48-h EC50 of just 0.7 mg/L. For E. pallida, survival, tentacle retraction and reproduction were unaffected by prolonged high exposures (12-d NOEC 54 mg/L). This study provides important data supporting the derivation of separate water quality guidelines for Mn in systems with and without coral - a decision recently considered by Australian and New Zealand authorities. It demonstrates the high sensitivity of coral larvae and adult colonies to Mn and the potential risks associated with relying on other early life stage tests and/or E. pallida as ecotoxicological representatives of critically important scleractinian corals.


Asunto(s)
Estadios del Ciclo de Vida/efectos de los fármacos , Manganeso/toxicidad , Anémonas de Mar/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Ecotoxicología , Fertilización/efectos de los fármacos , Larva/efectos de los fármacos , Reproducción Asexuada/efectos de los fármacos , Agua de Mar/química , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA