Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4252, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253721

RESUMEN

Magnetic skyrmions are nanoscale spin textures touted as next-generation computing elements. When subjected to lateral currents, skyrmions move at considerable speeds. Their topological charge results in an additional transverse deflection known as the skyrmion Hall effect (SkHE). While promising, their dynamic phenomenology with current, skyrmion size, geometric effects and disorder remain to be established. Here we report on the ensemble dynamics of individual skyrmions forming dense arrays in Pt/Co/MgO wires by examining over 20,000 instances of motion across currents and fields. The skyrmion speed reaches 24 m/s in the plastic flow regime and is surprisingly robust to positional and size variations. Meanwhile, the SkHE saturates at ∼22∘, is substantially reshaped by the wire edge, and crucially increases weakly with skyrmion size. Particle model simulations suggest that the SkHE size dependence - contrary to analytical predictions - arises from the interplay of intrinsic and pinning-driven effects. These results establish a robust framework to harness SkHE and achieve high-throughput skyrmion motion in wire devices.

2.
Nature ; 592(7854): 355-356, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854244

Asunto(s)
Física , Matemática
3.
Sci Rep ; 10(1): 11625, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669592

RESUMEN

We examine driven superconducting vortices interacting with quenched disorder under a sequence of perpendicular drive pulses. As a function of disorder strength, we find four types of behavior distinguished by the presence or absence of memory effects. The fragile and jammed states exhibit memory, while the elastic and pinning dominated regimes do not. In the fragile regime, the system organizes into a pinned state during the first pulse, flows during the second perpendicular pulse, and then returns to a pinned state during the third pulse which is parallel to the first pulse. This behavior is the hallmark of the fragility proposed for jamming in particulate matter. For stronger disorder, we observe a robust jamming state with memory where the system reaches a pinned or reduced flow state during the perpendicular drive pulse, similar to the shear jamming of granular systems. We show signatures of the different states in the spatial vortex configurations, and find that memory effects arise from coexisting elastic and pinned components of the vortex assembly. The sequential perpendicular driving protocol we propose for distinguishing fragile, jammed, and pinned phases should be general to the broader class of driven interacting particles in the presence of quenched disorder.

4.
Nat Commun ; 9(1): 4146, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297820

RESUMEN

Artificial particle ices are model systems of constrained, interacting particles. They have been introduced theoretically to study ice-manifolds emergent from frustration, along with domain wall and grain boundary dynamics, doping, pinning-depinning, controlled transport of topological defects, avalanches, and memory effects. Recently such particle-based ices have been experimentally realized with vortices in nano-patterned superconductors or gravitationally trapped colloids. Here we demonstrate that, although these ices are generally considered equivalent to magnetic spin ices, they can access a novel spectrum of phenomenologies that are inaccessible to the latter. With experiments, theory and simulations we demonstrate that in mixed coordination geometries, entropy-driven negative monopoles spontaneously appear at a density determined by the vertex-mixture ratio. Unlike its spin-based analogue, the colloidal system displays a "fragile ice" manifold, where local energetics oppose the ice rule, which is instead enforced through conservation of the global topological charge. The fragile colloidal ice, stabilized by topology, can be spontaneously broken by topological charge transfer.

5.
Sci Rep ; 8(1): 15510, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341339

RESUMEN

Magnetic skyrmions are stable nanosized spin structures that can be displaced at low electrical current densities. Because of these properties, they have been proposed as building blocks of future electronic devices with unprecedentedly high information density and low energy consumption. The electrical detection of an ordered skyrmion lattice via the Topological Hall Effect (THE) in a bulk crystal, has so far been demonstrated only at cryogenic temperatures in the MnSi family of compounds. Here, we report the observation of a skyrmion lattice Topological Hall Effect near room temperature (276 K) in a mesoscopic lamella carved from a bulk crystal of FeGe. This region coincides with the skyrmion lattice location revealed by neutron scattering. We provide clear evidence of a re-entrant helicoid magnetic phase adjacent to the skyrmion phase, and discuss the large THE amplitude (5 nΩ.cm) in view of the ordinary Hall Effect.

6.
Soft Matter ; 12(47): 9549-9560, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27834430

RESUMEN

Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

7.
Soft Matter ; 12(41): 8606-8615, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27714306

RESUMEN

Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.

8.
Nat Commun ; 6: 8805, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26564783

RESUMEN

The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a 'front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.

9.
Sci Rep ; 5: 8000, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613839

RESUMEN

We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

10.
Soft Matter ; 10(38): 7502-10, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25123498

RESUMEN

We examine a two-dimensional system of sterically repulsive interacting disks where each particle runs in a random direction. This system is equivalent to a run-and-tumble dynamics system in the limit where the run time is infinite. At low densities, we find a strongly fluctuating state composed of transient clusters. Above a critical density that is well below the density at which non-active particles would crystallize, the system can organize into a drifting quiescent or frozen state where the fluctuations are lost and large crystallites form surrounded by a small density of individual particles. Although all the particles are still moving, their paths form closed orbits. The average transient time to organize into the quiescent state diverges as a power law upon approaching the critical density from above. We compare our results to the random organization observed for periodically sheared systems that can undergo an absorbing transition from a fluctuating state to a dynamical non-fluctuating state. In the random organization studies, the system organizes to a state in which the particles no longer interact; in contrast, we find that the randomly running active matter organizes to a strongly interacting dynamically jammed state. We show that the transition to the frozen state is robust against a certain range of stochastic fluctuations. We also examine the effects of adding a small number of pinned particles to the system and find that the transition to the frozen state shifts to significantly lower densities and arises via the nucleation of faceted crystals centered at the obstacles.

11.
Soft Matter ; 10(33): 6332-8, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25030212

RESUMEN

We numerically examine the two-dimensional ordering of a stripe forming system of particles with competing long-range repulsion and short-range attraction in the presence of a quasi-one-dimensional corrugated substrate. As a function of increasing substrate strength or period we show that a remarkable variety of distinct orderings can be realized, including modulated stripes, prolate clump phases, two dimensional ordered kink structures, crystalline void phases, and smectic phases. Additionally in some cases the stripes align perpendicular to the substrate troughs. Our results suggest that a new route to self assembly for systems with competing interactions can be achieved through the addition of a simple periodic modulated substrate.

12.
Phys Rev Lett ; 112(18): 187203, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856718

RESUMEN

We show that a temperature gradient induces an ac electric current in multiferroic insulators when the sample is embedded in a circuit. We also show that a thermal gradient can be used to move magnetic Skyrmions in insulating chiral magnets: the induced magnon flow from the hot to the cold region drives the Skyrmions in the opposite direction via a magnonic spin transfer torque. Both results are combined to compute the effect of Skyrmion motion on the ac current generation and demonstrate that Skyrmions in insulators are a promising route for spin caloritronics applications.

13.
Phys Rev Lett ; 110(20): 207202, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167443

RESUMEN

We study the dynamics of Skyrmions in chiral magnets in the presence of a spin polarized current. The motion of Skyrmions in the ferromagnetic background excites spin waves and contributes to additional damping. At a large current, the spin wave spectrum becomes gapless and Skyrmions are created dynamically from the ferromagnetic state. At an even higher current, these Skyrmions are strongly deformed due to the damping and become unstable at a threshold current, leading to a chiral liquid. We show how Skyrmions can be created by increasing the current in the magnetic spiral state. We then construct a dynamic phase diagram for a chiral magnet with a current. The instability transitions between different states can be observed as experimentally clear signatures in the transport measurements, such as jumps and hysteresis.

14.
Artículo en Inglés | MEDLINE | ID: mdl-24483455

RESUMEN

A fundamental problem in the physics of amorphous materials is understanding the transition from reversible to irreversible plastic behavior and its connection to yield. Currently, continuum material modeling relies on phenomenological yield thresholds, however in many cases the transition from elastic to plastic behavior is gradual, which makes it difficult to identify an exact yield criterion. Here we show that under periodic shear, amorphous solids undergo a transition from repetitive, predictable behavior to chaotic, irregular behavior as a function of the strain amplitude. In both the periodic and chaotic regimes, localized particle rearrangements are observed. We associate the point of transition from repetitive to chaotic behavior with the yield strain and suggest that at least for oscillatory shear, yield in amorphous solids is a result of a "transition to chaos."

15.
Nat Mater ; 11(11): 912-3, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23089993
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA