Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(1): 424-432, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173584

RESUMEN

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier heights across adjacent QDs. Our findings provide a deeper understanding of how the energy levels of bridge molecules influence charge tunneling and PL switching performance in QD systems and offer deeper insights for the future design and development of QD based photo-switches.

2.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37982482

RESUMEN

The ability to synthetically tune the ligand frameworks of redox-active molecules is of critical importance to the economy of solar fuels because manipulating their redox properties can afford control over the operating potentials of sustained electrocatalytic or photoelectrocatalytic processes. The electronic and steric properties of 2,2':6',2″-terpyridine (Terpy) ligand frameworks can be tuned by functional group substitution on ligand backbones, and these correlate strongly to their Hammett parameters. The synthesis of a new series of tridentate meridional ligands of 2,4,6-trisubstituted pyridines that engineers the ability to finely tune the redox potentials of cobalt complexes to more positive potentials than that of their Terpy analogs is achieved by aryl-functionalizing at the four-position and by including isoquinoline at the two- and six-positions of pyridine (Aryl-DiQ). Their cobalt complex syntheses, their electronic properties, and their catalytic activity for carbon dioxide (CO2) reduction are reported and compared to their Terpy analogs. The cobalt derivatives generally experience a positive shift in their redox features relative to the Terpy-based analogs, covering a complementary potential range. Although those evaluated fail to produce any quantifiable products for the reduction of CO2 and suffer from long-term instability, these results suggest possible alternate strategies for stabilizing these compounds during catalysis. We speculate that lower equilibrium association constants to the cobalt center are intrinsic to these ligands, which originate from a steric interaction between protons on the pyridine and isoquinoline moieties. Nevertheless, the new Aryl-DiQ ligand framework has been engineered to selectively tune homoleptic cobalt complexes' redox potentials.

3.
Chem Commun (Camb) ; 59(46): 7112, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37232454

RESUMEN

Correction for 'Co-electrocatalytic CO2 reduction mediated by a dibenzophosphole oxide and a chromium complex' by Connor A. Koellner et al., Chem. Commun., 2023, https://doi.org/10.1039/D3CC00166K.

4.
Chem Commun (Camb) ; 59(42): 6359-6362, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37139853

RESUMEN

We report a co-electrocatalytic system for the selective reduction of CO2 to CO, comprised of a previously reported molecular Cr complex and 5-phenylbenzo[b]phosphindole-5-oxide (PhBPO) as a redox mediator. Under protic conditions, the co-electrocatalytic system attains a turnover frequency (TOF) of 15 s-1 and quantitative selectivity for CO. It is proposed that PhBPO interacts with the Cr-based catalyst, coordinating in an axial position trans to an intermediate hydroxycarbonyl species, M-CO2H, mediating electron transfer to the catalyst and lowering the barrier for C-OH bond cleavage.

5.
J Am Chem Soc ; 145(4): 2013-2027, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652254

RESUMEN

Homogeneous electrocatalysis has been well studied over the past several decades for the conversion of small molecules to useful products for green energy applications or as chemical feedstocks. However, in order for these catalyst systems to be used in industrial applications, their activity and stability must be improved. In naturally occurring enzymes, redox equivalents (electrons, often in a concerted manner with protons) are delivered to enzyme active sites by small molecules known as redox mediators (RMs). Inspired by this, co-electrocatalytic systems with homogeneous catalysts and RMs have been developed for the conversion of alcohols, nitrogen, unsaturated organic substrates, oxygen, and carbon dioxide. In these systems, the RMs have been shown to both increase the activity of the catalyst and shift selectivity to more desired products by altering catalytic cycles and/or avoiding high-energy intermediates. However, the area is currently underdeveloped and requires additional fundamental advancements in order to become a more general strategy. Here, we summarize the recent examples of homogeneous co-electrocatalysis and discuss possible future directions for the field.

6.
Inorg Chem ; 61(43): 16963-16970, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36260749

RESUMEN

Electrocatalyst design and optimization strategies continue to be an active area of research interest for the applied use of renewable energy resources. The electrocatalytic conversion of carbon dioxide (CO2) is an attractive approach in this context because of the added potential benefit of addressing its rising atmospheric concentrations. In previous experimental and computational studies, we have described the mechanism of the first molecular Cr complex capable of electrocatalytically reducing CO2 to carbon monoxide (CO) in the presence of an added proton donor, which contained a redox-active 2,2'-bipyridine (bpy) fragment, CrN2O2. The high selectivity for CO in the bpy-based system was dependent on a delocalized CrII(bpy•-) active state. Subsequently, we became interested in exploring how expanding the polypyridyl ligand core would impact the selectivity and activity during electrocatalytic CO2 reduction. Here, we report a new CrN3O catalyst, Cr(tpytbupho)Cl2 (1), where 2-(2,2':6',2″-terpyridin-6-yl)-4,6-di-tert-butylphenolate = [tpytbupho]-, which reduces CO2 to CO with almost quantitative selectivity via a different mechanism than our previously reported Cr(tbudhbpy)Cl(H2O) catalyst. Computational analyses indicate that, although the stoichiometry of both reactions is identical, changes in the observed rate law are the combined result of a decrease in the intrinsic ligand charge (L3X vs L2X2) and an increase in the ligand redox activity, which result in increased electronic coupling between the doubly reduced tpy fragment of the ligand and the CrII center. The strong electronic coupling enhances the rate of protonation and subsequent C-OH bond cleavage, resulting in CO2 binding becoming the rate-determining step, which is an uncommon mechanism during protic CO2 reduction.

7.
Chem Sci ; 13(33): 9595-9606, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36091894

RESUMEN

Electrocatalytic CO2 reduction is an attractive strategy to mitigate the continuous rise in atmospheric CO2 concentrations and generate value-added chemical products. A possible strategy to increase the activity of molecular systems for these reactions is the co-catalytic use of redox mediators (RMs), which direct reducing equivalents from the electrode surface to the active site. Recently, we demonstrated that a sulfone-based RM could trigger co-electrocatalytic CO2 reduction via an inner-sphere mechanism under aprotic conditions. Here, we provide support for inner-sphere cooperativity under protic conditions by synthetically modulating the mediator to increase activity at lower overpotentials (inverse potential scaling). Furthermore, we show that both the intrinsic and co-catalytic performance of the Cr-centered catalyst can be enhanced by ligand design. By tuning both the Cr-centered catalyst and RM appropriately, an optimized co-electrocatalytic system with quantitative selectivity for CO at an overpotential (η) of 280 mV and turnover frequency (TOF) of 194 s-1 is obtained, representing a three-fold increase in co-catalytic activity at 130 mV lower overpotential than our original report. Importantly, this work lays the foundation of a powerful tool for developing co-catalytic systems for homogeneous electrochemical reactions.

9.
Angew Chem Int Ed Engl ; 61(1): e202109645, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34695281

RESUMEN

The electrocatalytic reduction of CO2 is an appealing method for converting renewable energy sources into value-added chemical feedstocks. We report a co-electrocatalytic system for the reduction of CO2 to CO comprised of a molecular Cr complex and dibenzothiophene-5,5-dioxide (DBTD) as a redox mediator, which achieves high activity (TOF=1.51-2.84×105  s-1 ) and quantitative selectivity. Under aprotic or protic conditions, DBTD produces a co-electrocatalytic response with 1 by coordinating trans to the site of CO2 binding and mediating electron transfer from the electrode with quantitative efficiency for CO. This assembly is reliant on through-space electronic conjugation between the π frameworks of DBTD and the bpy fragment of the catalyst ligand, with contributions from dispersive interactions and weak sulfone coordination.

10.
Chem Sci ; 12(28): 9733-9741, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34349945

RESUMEN

The two-electron and two-proton p-hydroquinone/p-benzoquinone (H2Q/BQ) redox couple has mechanistic parallels to the function of ubiquinone in the electron transport chain. This proton-dependent redox behavior has shown applicability in catalytic aerobic oxidation reactions, redox flow batteries, and co-electrocatalytic oxygen reduction. Under nominally aprotic conditions in non-aqueous solvents, BQ can be reduced by up to two electrons in separate electrochemically reversible reactions. With weak acids (AH) at high concentrations, potential inversion can occur due to favorable hydrogen-bonding interactions with the intermediate monoanion [BQ(AH) m ]˙-. The solvation shell created by these interactions can mediate a second one-electron reduction coupled to proton transfer at more positive potentials ([BQ(AH) m ]˙- + nAH + e- ⇌ [HQ(AH)(m+n)-1(A)]2-), resulting in an overall two electron reduction at a single potential at intermediate acid concentrations. Here we show that hydrogen-bonded adducts of reduced quinones and the proton donor 2,2,2-trifluoroethanol (TFEOH) can mediate the transfer of electrons to a Mn-based complex during the electrocatalytic reduction of dioxygen (O2). The Mn electrocatalyst is selective for H2O2 with only TFEOH and O2 present, however, with BQ present under sufficient concentrations of TFEOH, an electrogenerated [H2Q(AH)3(A)2]2- adduct (where AH = TFEOH) alters product selectivity to 96(±0.5)% H2O in a co-electrocatalytic fashion. These results suggest that hydrogen-bonded quinone anions can function in an analogous co-electrocatalytic manner to H2Q.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...