Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biopreserv Biobank ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686645

RESUMEN

Density gradient centrifugation is a conventional technique widely utilized to isolate bone marrow mononuclear cells (BM-MNC) from bone marrow (BM) aspirates obtained from pediatric B-cell acute lymphoblastic leukemia (B-ALL) patients. Nevertheless, this technique achieves incomplete recovery of mononuclear cells and is relatively time-consuming and expensive. Given that B-ALL is the most common childhood malignancy, alternative methods for processing B-ALL samples may be more cost-effective. In this pilot study, we use several readouts, including immune phenotype, cell viability, and leukemia-initiating capacity in immune-deficient mice, to directly compare the density gradient centrifugation and buffy coat processing methods. Our findings indicate that buffy coat isolation yields comparable BM-MNC product in terms of both immune and leukemia cell content and could provide a viable, lower cost alternative for biobanks processing pediatric leukemia samples.

2.
Leukemia ; 38(5): 969-980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519798

RESUMEN

The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eµ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eµ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eµ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.


Asunto(s)
Modelos Animales de Enfermedad , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animales , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Aneuploidia , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Centrosoma/patología , Diploidia
3.
J Control Release ; 367: 27-44, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215984

RESUMEN

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Asunto(s)
Enfermedad de Huntington , Oligonucleótidos Antisentido , Ratones , Animales , Oligonucleótidos Antisentido/uso terapéutico , Apolipoproteína A-I/genética , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Oligonucleótidos/uso terapéutico , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapéutico , Modelos Animales de Enfermedad
4.
Nat Commun ; 14(1): 7161, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989729

RESUMEN

Childhood acute lymphoblastic leukemia (ALL) genomes show that relapses often arise from subclonal outgrowths. However, the impact of clonal evolution on the actionable proteome and response to targeted therapy is not known. Here, we present a comprehensive retrospective analysis of paired ALL diagnosis and relapsed specimen. Targeted next generation sequencing and proteome analysis indicate persistence of actionable genome variants and stable proteomes through disease progression. Paired viably-frozen biopsies show high correlation of drug response to variant-targeted therapies but in vitro selectivity is low. Proteome analysis prioritizes PARP1 as a pan-ALL target candidate needed for survival following cellular stress; diagnostic and relapsed ALL samples demonstrate robust sensitivity to treatment with two PARP1/2 inhibitors. Together, these findings support initiating prospective precision oncology approaches at ALL diagnosis and emphasize the need to incorporate proteome analysis to prospectively determine tumor sensitivities, which are likely to be retained at disease relapse.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteoma , Niño , Humanos , Proteoma/genética , Mutación , Estudios Retrospectivos , Estudios Prospectivos , Medicina de Precisión , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Recurrencia
5.
Blood Adv ; 7(22): 7087-7099, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37824841

RESUMEN

Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Transducción de Señal , Ratones , Humanos , Animales , Niño , Ligandos , ARN Bicatenario/farmacología , Linfocitos B
6.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569447

RESUMEN

High-risk neuroblastoma remains a profound clinical challenge that requires eradication of neuroblastoma cells from a variety of organ sites, including bone marrow, liver, and CNS, to achieve a cure. While preclinical modeling is a powerful tool for the development of novel cancer therapies, the lack of widely available models of metastatic neuroblastoma represents a significant barrier to the development of effective treatment strategies. To address this need, we report a novel luciferase-expressing derivative of the widely used Th-MYCN mouse. While our model recapitulates the non-metastatic neuroblastoma development seen in the parental transgenic strain, transplantation of primary tumor cells from disease-bearing mice enables longitudinal monitoring of neuroblastoma growth at distinct sites in immune-deficient or immune-competent recipients. The transplanted tumors retain GD2 expression through many rounds of serial transplantation and are sensitive to GD2-targeted immune therapy. With more diverse tissue localization than is seen with human cell line-derived xenografts, this novel model for high-risk neuroblastoma could contribute to the optimization of immune-based treatments for this deadly disease.


Asunto(s)
Neuroblastoma , Ratones , Humanos , Animales , Proteína Proto-Oncogénica N-Myc , Ratones Transgénicos , Neuroblastoma/terapia , Neuroblastoma/tratamiento farmacológico , Adaptación Fisiológica , Aclimatación
7.
Cell Transplant ; 31: 9636897221113803, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912954

RESUMEN

Fibroblasts, or their homolog stromal cells, are present in most tissues and play an essential role in tissue homeostasis and regeneration. As a result, fibroblast-based strategies have been widely employed in tissue engineering. However, while considered to have immunosuppressive properties, the survival and functionality of allogeneic fibroblasts after transplantation remain controversial. Here, we evaluated innate and adaptive immune responses against allogeneic fibroblasts following intradermal injection into different immune-deficient mouse strains. While allogeneic fibroblasts were rejected 1 week after transplantation in immunocompetent mice, rejection did not occur in immunodeficient γ chain-deficient NOD-SCID (NSG) mice. T-cell- and B-cell-deficient RAG1 knockout mice showed greater loss of fibroblasts by day 5 after transplantation compared with NSG mice (P ≤ 0.05) but prolonged persistence compared with wild-type recipient (P ≤ 0.005). Loss of fibroblasts correlated with the expression of proinflammatory chemokine genes and infiltration of myeloid cells in the transplantation site. Depletion of macrophages and neutrophils delayed rejection, revealing the role of innate immune cells in an early elimination of fibroblasts that is followed by T-cell-mediated rejection in the second week. These findings indicate that the application of allogeneic fibroblasts in tissue engineering products requires further improvements to overcome cell rejection by innate and adaptive immune cells.


Asunto(s)
Rechazo de Injerto , Trasplante de Células Madre Hematopoyéticas , Animales , Fibroblastos , Inmunidad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Piel , Trasplante Homólogo
8.
Cytometry A ; 101(1): 57-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128309

RESUMEN

With the continued poor outcome of relapsed acute lymphoblastic leukemia (ALL), new patient-specific approaches for disease progression monitoring and therapeutic intervention are urgently needed. Patient-derived xenografts (PDX) of primary ALL in immune-deficient mice have become a powerful tool for studying leukemia biology and therapy response. In PDX mice, the immunophenotype of the patient's leukemia is commonly believed to be stably propagated. In patients, however, the surface marker expression profile of the leukemic population often displays poorly understood immunophenotypic shifts during chemotherapy and ALL progression. We therefore developed a translational flow cytometry platform to study whether the patient-specific immunophenotype is faithfully recapitulated in PDX mice. To enable valid assessment of immunophenotypic stability and subpopulation complexity of the patient's leukemia after xenotransplantation, we comprehensively immunophenotyped diagnostic B-ALL from children and their matched PDX using identical, clinically standardized flow protocols and instrument settings. This cross-standardized approach ensured longitudinal stability and cross-platform comparability of marker expression intensity at high phenotyping depth. This analysis revealed readily detectable changes to the patient leukemia-associated immunophenotype (LAIP) after xenotransplantation. To further investigate the mechanism underlying these complex immunophenotypic shifts, we applied an integrated analytical approach that combined clinical phenotyping depth and high analytical sensitivity with unbiased high-dimensional algorithm-based analysis. This high-resolution analysis revealed that xenotransplantation achieves patient-specific propagation of phenotypically stable B-ALL subpopulations and that the immunophenotypic shifts observed at the level of bulk leukemia were consistent with changes in underlying subpopulation abundance. By incorporating the immunophenotypic complexity of leukemic populations, this novel cross-standardized analytical platform could greatly expand the utility of PDX for investigating ALL progression biology and assessing therapies directed at eliminating relapse-driving leukemic subpopulations.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Células Precursoras de Linfocitos B , Animales , Citometría de Flujo , Xenoinjertos , Humanos , Inmunofenotipificación , Ratones , Trasplante Heterólogo
9.
Cancers (Basel) ; 15(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36612150

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common form of cancer in children, with most cases arising from fetal B cell precursor, termed B-ALL. Here, we use immunofluorescence analysis of B-ALL cells to identify centrosome amplification events that require the centrosome clustering pathway to successfully complete mitosis. Our data reveals that primary human B-ALL cells and immortal B-ALL cell lines from both human and mouse sources show defective bipolar spindle formation, abnormal mitotic progression, and cell death following treatment with centrosome clustering inhibitors (CCI). We demonstrate that CCI-refractory B-ALL cells exhibit markers for increased genomic instability, including DNA damage and micronuclei, as well as activation of the cyclic GMP-AMP synthase (cGAS)-nuclear factor kappa B (NF-κB) signalling pathway. Our analysis of cGAS knock-down B-ALL clones implicates cGAS in the sensitivity of B-ALL cells to CCI treatment. Due to its integral function and specificity to cancer cells, the centrosome clustering pathway presents a powerful molecular target for cancer treatment while mitigating the risk to healthy cells.

10.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625492

RESUMEN

Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.


Asunto(s)
Citrobacter rodentium/inmunología , Infecciones por Enterobacteriaceae/inmunología , Linfocitos/inmunología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Células Dendríticas/inmunología , Microbioma Gastrointestinal/inmunología , Interleucinas/análisis , Tejido Linfoide/citología , Tejido Linfoide/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR/biosíntesis , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Tretinoina/metabolismo , Péptido Intestinal Vasoactivo/genética , Interleucina-22
11.
J Exp Clin Cancer Res ; 40(1): 96, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722259

RESUMEN

BACKGROUND: Murine xenografts of pediatric leukemia accurately recapitulate genomic aberrations. How this translates to the functional capacity of cells remains unclear. Here, we studied global protein abundance, phosphorylation, and protein maturation by proteolytic processing in 11 pediatric B- and T- cell ALL patients and 19 corresponding xenografts. METHODS: Xenograft models were generated for each pediatric patient leukemia. Mass spectrometry-based methods were used to investigate global protein abundance, protein phosphorylation, and limited proteolysis in paired patient and xenografted pediatric acute B- and T- cell lymphocytic leukemia, as well as in pediatric leukemia cell lines. Targeted next-generation sequencing was utilized to examine genetic abnormalities in patients and in corresponding xenografts. Bioinformatic and statistical analysis were performed to identify functional mechanisms associated with proteins and protein post-translational modifications. RESULTS: Overall, we found xenograft proteomes to be most equivalent with their patient of origin. Protein level differences that stratified disease subtypes at diagnostic and relapse stages were largely recapitulated in xenografts. As expected, PDXs lacked multiple human leukocyte antigens and complement proteins. We found increased expression of cell cycle proteins indicating a high proliferative capacity of xenografted cells. Structural genomic changes and mutations were reflected at the protein level in patients. In contrast, the post-translational modification landscape was shaped by leukemia type and host and only to a limited degree by the patient of origin. Of 201 known pediatric oncogenic drivers and drug-targetable proteins, the KMT2 protein family showed consistently high variability between patient and corresponding xenografts. Comprehensive N terminomics revealed deregulated proteolytic processing in leukemic cells, in particular from caspase-driven cleavages found in patient cells. CONCLUSION: Genomic and host factors shape protein and post-translational modification landscapes differently. This study highlights select areas of diverging biology while confirming murine patient-derived xenografts as a generally accurate model system.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteoma/metabolismo , Transactivadores/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Gut Microbes ; 12(1): 1847976, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33258388

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory condition linked to intestinal microbial dysbiosis, including the expansion of E. coli strains related to extra-intestinal pathogenic E. coli. These "pathobionts" exhibit pathogenic properties, but their potential to promote UC is unclear due to the lack of relevant animal models. Here, we established a mouse model using a representative UC pathobiont strain (p19A), and mice lacking single immunoglobulin and toll-interleukin 1 receptor domain (SIGIRR), a deficiency increasing susceptibility to gut infections. Strain p19A was found to adhere to the cecal mucosa of Sigirr -/- mice, causing modest inflammation. Moreover, it dramatically worsened dextran sodium sulfate-induced colitis. This potentiation was attenuated using a p19A strain lacking α-hemolysin genes, or when we targeted pathobiont adherence using a p19A strain lacking the adhesin FimH, or following treatment with FimH antagonists. Thus, UC pathobionts adhere to the intestinal mucosa, and worsen the course of colitis in susceptible hosts.


Asunto(s)
Colitis Ulcerosa/genética , Colitis Ulcerosa/microbiología , Escherichia coli/crecimiento & desarrollo , Microbioma Gastrointestinal , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Animales , Colitis Ulcerosa/inmunología , Modelos Animales de Enfermedad , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología
13.
Cancers (Basel) ; 12(1)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32015298

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. While frontline chemotherapy regimens are generally very effective, the prognosis for patients whose leukemia returns remains poor. The presence of measurable residual disease (MRD) in bone marrow at the completion of induction therapy is the strongest predictor of relapse, suggesting that strategies to eliminate the residual leukemic blasts from this niche could reduce the incidence of recurrence. We have previously reported that toll-like receptor (TLR) agonists achieve durable T cell-mediated protection in transplantable cell line-based models of B cell precursor leukemia (B-ALL). However, the successful application of TLR agonist therapy in an MRD setting would require the induction of anti-leukemic immune activity specifically in the bone marrow, a site of the chemotherapy-resistant leukemic blasts. In this study, we compare the organ-specific depletion of human and mouse primary B-ALL cells after systemic administration of endosomal TLR agonists. Despite comparable splenic responses, only the TLR9 agonist induced strong innate immune responses in the bone marrow and achieved a near-complete elimination of B-ALL cells. This pattern of response was associated with the most significantly prolonged disease-free survival. Overall, our findings identify innate immune activity in the bone marrow that is associated with durable TLR-induced protection against B-ALL outgrowth.

14.
Front Oncol ; 9: 411, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192123

RESUMEN

Therapy-induced presentation of cell surface calreticulin (CRT) is a pro-phagocytic immunogen beneficial for invoking anti-tumor immunity. Here, we characterized the roles of ERp57 and α-integrins as CRT-interacting proteins that coordinately regulate CRT translocation from the ER to the surface during immunogenic cell death. Using T-lymphoblasts as a genetic cell model, we found that drug-induced surface CRT is dependent on ERp57, while drug-induced surface ERp57 is independent of CRT. Differential subcellular immunostaining assays revealed that ERp57-/- cells have minimal cytosolic CRT, indicating that ERp57 is indispensable for extra-ER accumulation of CRT. Stimulation of integrin activity, with either cell adhesion or molecular agonists, resulted in decreased drug-induced surface CRT and ERp57 levels. Similarly, surface CRT and ERp57 was reduced in cells expressing GFFKR, a conserved α-integrin cytosolic motif that binds CRT. Drug-induced surface ERp57 levels were consistently higher in CRT-/- cells, suggesting integrin inhibition of surface ERp57 is an indirect consequence of α-integrin binding to CRT within the CRT-ERp57 complex. Furthermore, ß1-/- cells with reduced expression of multiple α-integrins, exhibit enhanced levels of drug-induced surface CRT and ERp57. Our findings highlight the coordinate involvement of plasma membrane integrins as inhibitors, and ERp57 originating from the ER as promoters, of CRT translocation from the ER to the cell surface.

15.
Cell Microbiol ; 21(7): e13026, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30893495

RESUMEN

Mammalian cells express an array of toll-like receptors to detect and respond to microbial pathogens, including enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC). These clinically important attaching and effacing (A/E) pathogens infect the apical surface of intestinal epithelial cells, causing inflammation as well as severe diarrheal disease. Because EPEC and EHEC are human-specific, the related murine pathogen Citrobacter rodentium has been widely used to define how hosts defend against A/E pathogens. This study explored the role of TLR9, a receptor that recognises unmethylated CpG dinucleotides present in bacterial DNA, in promoting host defence against C. rodentium. Infected Tlr9-/- mice suffered exaggerated intestinal damage and carried significantly higher (10-100 fold) pathogen burdens in their intestinal tissues as compared with wild type (WT) mice. C. rodentium infection also induced increased antimicrobial responses, as well as hyperactivation of NF-κB signalling in the intestines of Tlr9-/- mice. These changes were associated with accelerated depletion of the intestinal microbiota in Tlr9-/- mice as compared with WT mice. Notably, antibiotic-based depletion of the gut microbiota in WT mice prior to infection increased their susceptibility to the levels seen in Tlr9-/- mice. Our results therefore indicate that TLR9 signalling suppresses intestinal antimicrobial responses, thereby promoting microbiota-mediated colonisation resistance against C. rodentium infection.


Asunto(s)
Citrobacter rodentium/genética , Infecciones por Enterobacteriaceae/genética , Microbioma Gastrointestinal/genética , Receptor Toll-Like 9/genética , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Citrobacter rodentium/patogenicidad , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Interacciones Huésped-Patógeno/efectos de los fármacos , Ratones , FN-kappa B/genética
16.
Cell Death Dis ; 9(5): 544, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748606

RESUMEN

CD47 is a cell-surface marker well recognized for its anti-phagocytic functions. As such, an emerging avenue for targeted cancer therapies involves neutralizing the anti-phagocytic function using monoclonal antibodies (mAbs) to enhance tumour cell immunogenicity. A lesser known consequence of CD47 receptor ligation is the direct induction of tumour cell death. While several mAbs and their derivatives with this property have been studied, the best characterized is the commercially available mAb B6H12, which requires immobilization for induction of cell death. Here, we describe a commercially available mAb, CC2C6, which induces T-cell acute lymphoblastic leukemia (ALL) cell death in soluble form. Soluble CC2C6 induces CD47-dependent cell death in a manner consistent with immobilized B6H12, which is characterized by mitochondrial deficiencies but is independent of caspase activation. Titration studies indicated that CC2C6 shares a common CD47-epitope with B6H12. Importantly, CC2C6 retains the anti-phagocytic neutralizing function, thus possessing dual anti-tumour properties. Although CD47-ligation induced cell death occurs in a caspase-independent manner, CC2C6 was found to stimulate increases in Mcl-1 and NOXA levels, two Bcl-2 family proteins that govern the intrinsic apoptosis pathway. Further analysis revealed that the ratio of Mcl-1:NOXA were minimally altered for cells treated with CC2C6, in comparison to cells treated with agents that induced caspase-dependent apoptosis which alter this ratio in favour of NOXA. Finally, we found that CC2C6 can synergize with low dose chemotherapeutic agents that induce classical apoptosis, giving rise to the possibility of an effective combination treatment with reduced long-term sequelae associated with high-dose chemotherapies in childhood ALL.


Asunto(s)
Antineoplásicos Inmunológicos/inmunología , Antígeno CD47/inmunología , Recubrimiento Inmunológico , Proteínas de Neoplasias/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Animales , Antineoplásicos Inmunológicos/farmacología , Antígeno CD47/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Epítopos/inmunología , Humanos , Células Jurkat , Ratones , Proteínas de Neoplasias/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología
17.
Mol Biol Cell ; 29(7): 786-796, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29386294

RESUMEN

Mitotic spindle assembly and organization require forces generated by motor proteins. The activity of these motors is regulated by nonmotor adaptor proteins. However, there are limited studies reporting the functional importance of adaptors on the balance of motor forces and the promotion of faithful and timely cell division. Here we show that genomic deletion or small interfering RNA silencing of the nonmotor adaptor Hmmr/HMMR disturbs spindle microtubule organization and bipolar chromosome-kinetochore attachments with a consequent elevated occurrence of aneuploidy. Rescue experiments show a conserved motif in HMMR is required to generate interkinetochore tension and promote anaphase entry. This motif bears high homology with the kinesin Kif15 and is known to interact with TPX2, a spindle assembly factor. We find that HMMR is required to dampen kinesin Eg5-mediated forces through localizing TPX2 and promoting the formation of inhibitory TPX2-Eg5 complexes. In HMMR-silenced cells, K-fiber stability is reduced while the frequency of unattached chromosomes and the time needed for chromosome segregation are both increased. These defects can be alleviated in HMMR-silenced cells with chemical inhibition of Eg5 but not through the silencing of Kif15. Together, our findings indicate that HMMR balances Eg5--mediated forces to preserve the kinetics and integrity of chromosome segregation.

18.
Cell Death Dis ; 9(2): 162, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29415982

RESUMEN

Proteasome inhibitors have emerged as an effective therapy for the treatment of haematological malignancies; however, their efficacy can be limited by the development of tumour resistance mechanisms. Novel combination strategies including the addition of TLR adjuvants to increase cell death and augment immune responses may help enhance their effectiveness. Although generally thought to inhibit inflammatory responses and NF-κB activation, we found that under specific conditions proteasome inhibitors can promote inflammatory responses by mediating IL-1ß maturation and secretion after TLR stimulation. This was dependent on the timing of proteasome inhibition relative to TLR stimulation where reversal of treatment order could alternatively increase or inhibit IL-1ß secretion (P < 0.001). TLR stimulation combined with proteasome inhibition enhanced cell death in vitro and delayed tumour development in vivo in NOD SCID mice (P < 0.01). However, unlike IL-1ß secretion, cell death occurred similarly regardless of treatment order and was only partially caspase dependent, possessing characteristics of both apoptosis and necrosis as indicated by activation of caspase-1, 3, 8 and RIP3 phosphorylation. Although stimulation of various TLRs was capable of driving IL-1ß production, TLR4 stimulation was the most effective at increasing cell death in THP-1 and U937 cells. TLR4 stimulation and proteasome inhibition independently activated the RIP3 necroptotic pathway and ultimately reduced the effectiveness of caspase/necroptosis inhibitors in mitigating overall levels of cell death. This strategy of combining TLR stimulation with proteasome inhibition may improve the ability of proteasome inhibitors to generate immunogenic cell death and increase anti-tumour activity.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Interleucina-1beta/biosíntesis , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Proteasoma/farmacología , Receptores Toll-Like/agonistas , Animales , Bortezomib/farmacología , Inhibidores de Caspasas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HEK293 , Humanos , Lipopolisacáridos/farmacología , Ratones SCID , Necrosis , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
19.
JNCI Cancer Spectr ; 2(4): pky079, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30976750

RESUMEN

Precision oncology trials for pediatric cancers require rapid and accurate detection of genetic alterations. Tumor variant identification should interrogate the distinctive driver genes and more frequent copy number variants and gene fusions that are characteristics of pediatric tumors. Here, we evaluate tumor variant identification using whole genome sequencing (n = 12 samples) and two amplification-based next-generation sequencing assays (n = 28 samples), including one assay designed to rapidly assess common diagnostic, prognostic, and therapeutic biomarkers found in pediatric tumors. Variant identification by the three modalities was comparable when filtered for 151 pediatric driver genes. Across the 28 samples, the pediatric cancer-focused assay detected more tumor variants per sample (two-sided, P < .05), which improved the identification of potentially druggable events and matched pathway inhibitors. Overall, our data indicate that an assay designed to evaluate pediatric cancer-specific variants, including gene fusions, may improve the detection of target-agent pairs for precision oncology.

20.
Mol Cancer Res ; 16(1): 16-31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993511

RESUMEN

Cell-cycle progression and the acquisition of a migratory phenotype are hallmarks of human carcinoma cells that are perceived as independent processes but may be interconnected by molecular pathways that control microtubule nucleation at centrosomes. Here, cell-cycle progression dramatically impacts the engraftment kinetics of 4T1-luciferase2 breast cancer cells in immunocompetent BALB/c or immunocompromised NOD-SCID gamma (NSG) mice. Multiparameter imaging of wound closure assays was used to track cell-cycle progression, cell migration, and associated phenotypes in epithelial cells or carcinoma cells expressing a fluorescence ubiquitin cell-cycle indicator. Cell migration occurred with an elevated velocity and directionality during the S-G2-phase of the cell cycle, and cells in this phase possess front-polarized centrosomes with augmented microtubule nucleation capacity. Inhibition of Aurora kinase-A (AURKA/Aurora-A) dampens these phenotypes without altering cell-cycle progression. During G2-phase, the level of phosphorylated Aurora-A at centrosomes is reduced in hyaluronan-mediated motility receptor (HMMR)-silenced cells as is the nuclear transport of TPX2, an Aurora-A-activating protein. TPX2 nuclear transport depends upon HMMR-T703, which releases TPX2 from a complex with importin-α (KPNA2) at the nuclear envelope. Finally, the abundance of phosphorylated HMMR-T703, a substrate for Aurora-A, predicts breast cancer-specific survival and relapse-free survival in patients with estrogen receptor (ER)-negative (n = 941), triple-negative (TNBC) phenotype (n = 538), or basal-like subtype (n = 293) breast cancers, but not in those patients with ER-positive breast cancer (n = 2,218). Together, these data demonstrate an Aurora-A/TPX2/HMMR molecular axis that intersects cell-cycle progression and cell migration.Implications: Tumor cell engraftment, migration, and cell-cycle progression share common regulation of the microtubule cytoskeleton through the Aurora-A/TPX2/HMMR axis, which has the potential to influence the survival of patients with ER-negative breast tumors. Mol Cancer Res; 16(1); 16-31. ©2017 AACR.


Asunto(s)
Aurora Quinasa A/genética , Proteínas de Ciclo Celular/metabolismo , Animales , Aurora Quinasa A/metabolismo , Femenino , Humanos , Ratones , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...