Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 12(11): 1530-1535, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37910654

RESUMEN

Despite extensive research on biobased and fiber-based materials, fundamental questions regarding the molecular processes governing fiber-fiber interactions remain unanswered. In this study, we introduce a method to examine and clarify molecular interactions within fiber-fiber joints using precisely characterized model materials, i.e., regenerated cellulose gel beads with nanometer-smooth surfaces. By physically modifying these materials and drying them together to create model joints, we can investigate the mechanisms responsible for joining cellulose surfaces and how this affects adhesion in both dry and wet states through precise separation measurements. The findings reveal a subtle balance in the joint formation, influencing the development of nanometer-sized structures at the contact zone and likely inducing built-in stresses in the interphase. This research illustrates how model materials can be tailored to control interactions between cellulose-rich surfaces, laying the groundwork for future high-resolution studies aimed at creating stiff, ductile, and/or tough joints between cellulose surfaces and to allow for the design of high-performance biobased materials.

2.
Carbohydr Polym ; 312: 120788, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059528

RESUMEN

Nacre-mimicking nanocomposites based on colloidal cellulose nanofibrils (CNFs) and clay nanoparticles show excellent mechanical properties, yet processing typically involves preparation of two colloids followed by a mixing step, which is time- and energy-consuming. In this study, a facile preparation method using low energy kitchen blenders is reported in which CNF disintegration, clay exfoliation and mixing carried out in one step. Compared to composites made from the conventional method, the energy demand is reduced by about 97 %; the composites also show higher strength and work to fracture. Colloidal stability, CNF/clay nanostructure, and CNF/clay orientation are well characterized. The results suggest favorable effects from hemicellulose-rich, negatively charged pulp fibers and corresponding CNFs. CNF disintegration and colloidal stability are facilitated with substantial CNF/clay interfacial interaction. The results show a more sustainable and industrially relevant processing concept for strong CNF/clay nanocomposites.

3.
Clin Biochem ; 115: 92-96, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36470343

RESUMEN

Fecal immunochemical tests (FIT) are used to screen for colorectal cancer by detecting blood present in stool. Patients collect FIT specimens at home in a sampling kit and return them to the lab for testing. At our institution, patients are instructed to return their specimens to the laboratory within seven days from collection, which is shorter than the manufacturer stated room temperature (RT) stability of 15 days. The objective of this study was to assess and verify the stability of FIT specimens at RT and to determine if refrigerated storage improves stability. A series of experiments were performed with the OC-Sensor DIANA iFOB Test system between 2017 and 2019, using a positive clinical cut-off of 75 ng/mL (15 µg/g) hemoglobin (Hb). Specimens were collected and categorized based on their initially measured Hb concentration and had repeated measurements for up to 21 days following collection. FIT specimens were stored either at RT or refrigerated. Our results show that FIT specimens have reduced concentrations of Hb compared to baseline when stored at RT; refrigeration improved FIT specimen stability but did not completely prevent the reduction in Hb concentration. Additionally, specimens marginally above the cut-off (initial concentrations between 75 and 100 ng/mL (15-20 µg/g)) that were stored at RT showed 100% positivity on the day of collection (n=33), 63% on Day 3 (n=19), 46% on Days 4/5 (n=26), and 38% on Days 6/7 (n=26). Finally, specimens with Hb values near the clinical cut-off appear to be particularly susceptible to false negatives as a result of the reduction in Hb over time. Therefore, laboratories should verify the specifics of their FIT tests before offering it to patients to reduce false negatives.


Asunto(s)
Neoplasias Colorrectales , Hemoglobinas Anormales , Humanos , Neoplasias Colorrectales/diagnóstico , Detección Precoz del Cáncer/métodos , Sangre Oculta , Manejo de Especímenes/métodos
4.
Biomacromolecules ; 23(11): 4934-4947, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36318480

RESUMEN

The fabrication of reusable, sustainable adsorbents from low-cost, renewable resources via energy efficient methods is challenging. This paper presents wet-stable, carboxymethylated cellulose nanofibril (CNF) and amyloid nanofibril (ANF) based aerogel-like adsorbents prepared through efficient and green processes for the removal of metal ions and dyes from water. The aerogels exhibit tunable densities (18-28 kg m-3), wet resilience, and an interconnected porous structure (99% porosity), with a pH controllable surface charge for adsorption of both cationic (methylene blue and Pb(II)) and anionic (brilliant blue, congo red, and Cr(VI)) model contaminants. The Langmuir saturation adsorption capacity of the aerogel was calculated to be 68, 79, and 42 mg g-1 for brilliant blue, Pb(II), and Cr(VI), respectively. Adsorption kinetic studies for the adsorption of brilliant blue as a model contaminant demonstrated that a pseudo-second-order model best fitted the experimental data and that an intraparticle diffusion model suggests that there are three adsorption stages in the adsorption of brilliant blue on the aerogel. Following three cycles of adsorption and regeneration, the aerogels maintained nearly 97 and 96% of their adsorption capacity for methylene blue and Pb(II) as cationic contaminants and 89 and 80% for brilliant blue and Cr(VI) as anionic contaminants. Moreover, the aerogels showed remarkable selectivity for Pb(II) in the presence of calcium and magnesium as background ions, with a selectivity coefficient more than 2 orders of magnitude higher than calcium and magnesium. Overall, the energy-efficient and sustainable fabrication procedure, along with good structural stability, reusability, and selectivity, makes these aerogels very promising for water purification applications.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Adsorción , Azul de Metileno/química , Cinética , Magnesio , Calcio , Plomo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Aniones , Cationes , Concentración de Iones de Hidrógeno
5.
Carbohydr Polym ; 282: 119098, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123738

RESUMEN

Cellulose nanofibril-based aerogels have promising applicability in various fields; however, developing an efficient technique to functionalize and tune their surface properties is challenging. In this study, physically and covalently crosslinked cellulose nanofibril-based aerogel-like structures were prepared and modified by a molecular layer-by-layer (m-LBL) deposition method. Following three m-LBL depositions, an ultrathin polyamide layer was formed throughout the aerogel and its structure and chemical composition was studied in detail. Analysis of model cellulose surfaces showed that the thickness of the deposited layer after three m-LBLs was approximately 1 nm. Although the deposited layer was extremely thin, it led to a 2.6-fold increase in the wet specific modulus, improved the acid-base resistance, and changed the aerogels from hydrophilic to hydrophobic making them suitable materials for oil absorption with the absorption capacity of 16-36 g/g. Thus, demonstrating m-LBL assembly is a powerful technique for tailoring surface properties and functionality of cellulose substrates.

6.
Physiol Plant ; 173(4): 2103-2118, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34545591

RESUMEN

The KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) gene is highly expressed in flower and leaf abscission zones (AZs), and KD1 was reported to regulate tomato flower pedicel abscission via alteration of the auxin gradient and response in the flower AZ (FAZ). The present work was aimed to further examine how KD1 regulates signaling factors and regulatory genes involved in pedicel abscission, by using silenced KD1 lines and performing a large-scale transcriptome profiling of the FAZ before and after flower removal, using a customized AZ-specific microarray. The results highlighted a differential expression of regulatory genes in the FAZ of KD1-silenced plants compared to the wild-type. In the TAPG4::antisense KD1-silenced plants, KD1 gene expression decreased before flower removal, resulting in altered expression of regulatory genes, such as epigenetic modifiers, transcription factors, posttranslational regulators, and antioxidative defense factors occurring at zero time and before affecting auxin levels in the FAZ detected at 4 h after flower removal. The expression of additional regulatory genes was altered in the FAZ of KD1-silenced plants at 4-20 h after flower removal, thereby leading to an inhibited abscission phenotype, and downregulation of genes involved in abscission execution and defense processes. Our data suggest that KD1 is a master regulator of the abscission process, which promotes abscission of tomato flower pedicels. This suggestion is based on the inhibitory effect of KD1 silencing on flower pedicel abscission that operates via alteration of various regulatory pathways, which delay the competence acquisition of the FAZ cells to respond to ethylene signaling.


Asunto(s)
Solanum lycopersicum , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Hortic Res ; 8(1): 192, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465773

RESUMEN

Auxin plays a central role in control of organ abscission, and it is thought that changes in the auxin gradient across the abscission zone are the primary determinant of the onset of abscission. The nature of this gradient, whether in concentration, flow, or perhaps in the response system has not conclusively been determined. We employed a DR5::GUS auxin response reporter system to examine the temporal and spatial distribution of the auxin response activity in response to developmental and environmental cues during pedicel abscission in tomato. In pedicels of young and fully open flowers, auxin response, as indicated by GUS activity, was predominantly detected in the vascular tissues and was almost entirely confined to the abscission zone (AZ) and to the distal portion of the pedicel, with a striking reduction in the proximal tissues below the AZ-a 'step', rather than a gradient. Following pollination and during early fruit development, auxin response increased substantially throughout the pedicel. Changes in GUS activity following treatments that caused pedicel abscission (flower removal, high temperature, darkness, ethylene, or N-1-naphthylphthalamic acid (NPA) treatment) were relatively minor, with reduced auxin response in the AZ and some reduction above and below it. Expression of genes encoding some auxin efflux carriers (PIN) and influx carriers (AUX/LAX) was substantially reduced in the abscission zone of NPA-treated pedicels, and in pedicels stimulated to abscise by flower removal. Our results suggest that changes in auxin flow distribution through the abscission zone are likely more important than the auxin response system in the regulation of abscission.

8.
Front Plant Sci ; 12: 639717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335639

RESUMEN

Application of thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea, TDZ), a cytokinin analog, to inhibit the leaf yellowing that occurs after pinching potted rose plants, resulted in compact plants with shorter shoots and thicker internodes. Two weeks after treatment with 100 µM of TDZ, new shoots were half as long as those in control plants, and stem diameters were about 40% greater. This effect of TDZ is associated with changes in cell architecture. Although TDZ treatment stimulated ethylene production by the plants, inhibitors of ethylene biosynthesis (2-aminoethoxyvinyl glycine) or action (silver thiosulfate) did not affect the response of plants to TDZ. We found that TDZ treatment significantly suppressed the expression of bioactive gibberellic acid (GA) biosynthesis genes encoding GA3 and GA20 oxidases and slightly increased the expression of GA catabolism genes encoding GA2 oxidase. Application of GA3 and TDZ together resulted in normal elongation growth, although stem diameters were still somewhat thicker. Our results suggest that TDZ regulates shoot elongation and stem enlargement in potted rose plants through the modulation of bioactive GA biosynthesis.

9.
ACS Appl Mater Interfaces ; 13(27): 32467-32478, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34106700

RESUMEN

Thorough characterization and fundamental understanding of cellulose fibers can help us develop new, sustainable material streams and advanced functional materials. As an emerging nanomaterial, cellulose nanofibrils (CNFs) have high specific surface area and good mechanical properties; however, handling and processing challenges have limited their widespread use. This work reports an in-depth characterization of self-fibrillating cellulose fibers (SFFs) and their use in smart, responsive filters capable of regulating flow and retaining nanoscale particles. By combining direct and indirect characterization methods with polyelectrolyte swelling theories, it was shown that introduction of charges and decreased supramolecular order in the fiber wall were responsible for the exceptional swelling and nanofibrillation of SFFs. Different microscopy techniques were used to visualize the swelling of SFFs before, during, and after nanofibrillation. Through filtration and pH adjustment, smart filters prepared via in situ nanofibrillation showed an ability to regulate the flow rate through the filter and a capacity of retaining 95% of 300 nm (diameter) silica nanoparticles. This exceptionally rapid and efficient approach for making smart filters directly addresses the challenges associated with dewatering of CNFs and bridges the gap between science and technology, making the widespread use of CNFs in high-performance materials a not-so-distant reality.

10.
Carbohydr Polym ; 260: 117818, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712162

RESUMEN

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conducting polymer frequently used with cellulose, to develop advanced electronic materials. To understand the fundamental interactions between cellulose and PEDOT:PSS, a quartz crystal microbalance with dissipation (QCM-D) was used to study the adsorption of PEDOT:PSS onto model films of cellulose-nanofibrils (CNFs) and regenerated cellulose. The results show that PEDOT:PSS adsorbs spontaneously onto anionically charged cellulose wherein the adsorbed amount can be tuned by altering solution parameters such as pH, ionic strength and counterion to the charges on the CNF. Temperature-dependent QCM-D studies indicate that an entropy gain is the driving force for adsorption, as the adsorbed amount of PEDOT:PSS increased with increasing temperature. Colloidal probe AFM, in accordance with QCM-D results, also showed an increased adhesion between cellulose and PEDOT:PSS at low pH. AFM images show bead-like PEDOT:PSS particles on CNF surfaces, while no such organization was observed on the regenerated cellulose surfaces. This work provides insight into the interaction of PEDOT:PSS/cellulose that will aid in the design of sustainable electronic devices.


Asunto(s)
Celulosa/química , Poliestirenos/química , Tiofenos/química , Adsorción , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Nanofibras/química , Concentración Osmolar , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie , Temperatura
11.
Carbohydr Polym ; 250: 116943, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049855

RESUMEN

Fluorescently labeled cellulose nanofibrils (CNFs) were used to evaluate CNF leaching from paper according to standard safety assays for food contact materials. Enzymatically pretreated pulp was first labeled with 5-([4,6-Dichlorotriazin-2-yl]amino)fluorescein hydrochloride (DTAF), followed by homogenization to produce fluorescent CNFs of varying degrees of fibrillation. Labeling at the µmolar DTAF/g cellulose level imparted quantitative ppb fluorescence detection of CNFs (LOD of approximately 20 ppb), without significantly altering other material properties, suggesting that DTAF-labeled CNFs are an appropriate mimic for native CNFs and that this approach can be used to detect low CNF concentrations. Cold and hot-water extractions of laboratory papers (100 % CNFs and CNF-fiber blended papers) showed loss values below 3 wt% CNFs, with the finest CNF quality showing the least loss overall and with greater loss experienced under hot water conditions compared with cold water. DTAF-labeled CNFs can be used to address questions related to CNF distribution, localization, and loss.

12.
ACS Nano ; 14(1): 724-735, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31886646

RESUMEN

Cellulose nanofibrils (CNFs) show high modulus and strength and are already used in industrial applications. Mechanical properties of neat CNF films or CNF-polymer matrix nanocomposites are usually much better than for polymer matrix composite films reinforced by clay, graphene, graphene oxide, or carbon nanotubes. In order to obtain small CNF diameter and colloidal stability, chemical modification has so far been necessary, but this increases cost and reduces eco-friendly attributes. In this study, an unmodified holocellulose CNF (Holo-CNF) with small diameter is obtained from mildly peracetic acid delignified wood fibers. CNF is readily defibrillated by low-energy kitchen blender processing. The hemicellulose coating on individual fibrils in the wood plant cell wall is largely preserved in Holo-CNF. This "native" CNF shows well-preserved native fibril structure in terms of length (∼2.1 µm), diameter (<5 nm), high crystallinity, high cellulose molar mass, electronegative charge, and limited mechanical processing damage. The hemicellulose coating contributes mechanical properties and high optical transmittance for CNF nanopaper, which can otherwise only be achieved with chemically modified CNFs. The CNF nanopaper shows superior mechanical properties with a Young's modulus of 21 GPa and an ultimate strength of 320 MPa. Moreover, hemicellulose imparts recyclability from the dried state. Altogether, this native CNF represents a class of colloidally stable, eco-friendly, low-cost CNF of small diameter for large-scale applications of nanopaper and nanomaterials.

14.
Adv Mater ; 31(41): e1902977, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31408235

RESUMEN

The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3 C2 Tx ) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of ≈3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g-1 and a high conductivity of 295 S cm-1 . It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.


Asunto(s)
Celulosa/química , Capacidad Eléctrica , Fenómenos Mecánicos , Nanocompuestos/química , Electrodos
15.
ACS Macro Lett ; 8(10): 1334-1340, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35651153

RESUMEN

The widespread use of renewable nanomaterials has been limited due to poor integration with conventional polymer matrices. Often, chemical and physical surface modifications are implemented to improve compatibility, however, this comes with environmental and economic cost. This work demonstrates that renewable nanomaterials, specifically cellulose nanocrystals (CNCs), can be utilized in their unmodified state and presents a simple and versatile, one-step method to produce polyamide/CNC nanocomposites with unique Janus-like properties. Nanocomposites in the form of films, fibers, and capsules are prepared by dispersing as-prepared CNCs in the aqueous phase prior to the interfacial polymerization of aromatic diamines and acyl chlorides. The diamines in the aqueous phase not only serve as a monomer for polymerization, but additionally, adsorb to and promote the incorporation of CNCs into the nanocomposite. Regardless of the architecture, CNCs are only present along the surface facing the aqueous phase, resulting in materials with unique, Janus-like wetting behavior and potential applications in filtration, separations, drug delivery, and advanced fibers.

16.
Anal Chem ; 90(18): 11033-11039, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30099867

RESUMEN

The Exponential Amplification Reaction (EXPAR) enables isothermal amplification of nucleic acids. However, applications of EXPAR for the amplification of trace amounts of nucleic acids are hindered by high background. The mechanism of background generation is currently not well understood, although it is assumed to involve nonspecific extension of EXPAR templates by DNA polymerase. We present here a study of the mechanisms of triggering EXPAR background amplification. We show that interactions of EXPAR templates lead to background amplification via polymerase extension of the templates. We further designed and tested two strategies to minimize background amplification: blocking of the 3'-end of the template and sequence-independent weakening of the template-template interactions. Sequence-specific 3'-end blocking showed reduced background, suggesting that 3'-end template interactions are a contributing factor to background amplification. Sequence-independent binding of the whole EXPAR template substantially reduced background amplification by competing with template-template interactions along the entire template sequence. This study provided evidence that nonspecific template interactions and extension by DNA polymerase triggered the amplification of background in EXPAR. The addition of single stranded binding protein to bind nonspecifically with the EXPAR template decreased background by 3 orders of magnitude.

17.
Hortic Res ; 5: 28, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872533

RESUMEN

The Tomato Hybrid Proline-rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4, significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of THyPRP-silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of THyPRP in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters. Our data demonstrate that the effect of THyPRP silencing on pedicel abscission was not mediated by its effect on auxin balance, but by decreased ethylene biosynthesis and response. Additionally, THyPRP silencing revealed new players, which were demonstrated for the first time to be involved in regulating pedicel abscission processes. These include: gibberellin perception, Ca2+-Calmodulin signaling, Serpins and Small Ubiquitin-related Modifier proteins involved in post-translational modifications, Synthaxin and SNARE-like proteins, which participate in exocytosis, a process necessary for cell separation. These changes, occurring in the silenced plants early after flower removal, inhibited and/or delayed the acquisition of the competence of the FAZ cells to respond to ethylene signaling. Our results suggest that THyPRP acts as a master regulator of flower abscission in tomato, predominantly by playing a role in the regulation of the FAZ cell competence to respond to ethylene signals.

18.
Angew Chem Int Ed Engl ; 57(37): 11856-11866, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-29704305

RESUMEN

Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in situ assay applications. These amplification techniques eliminate the need for temperature cycling, as required for the polymerase chain reaction (PCR), while achieving comparable amplification yields. We highlight here recent advances in the exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. The incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables the highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from nonspecific template interactions, must be addressed to further improve isothermal and exponential amplification techniques.


Asunto(s)
ADN/análisis , Enzimas/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas/análisis , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , ADN/química , ADN/metabolismo , Mediciones Luminiscentes , Metales/análisis , MicroARNs/química , MicroARNs/metabolismo , Sistemas de Atención de Punto , Proteínas/metabolismo
19.
Hortic Res ; 5: 16, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619227

RESUMEN

The genetic regulatory mechanisms that govern natural corolla senescence in petunia are not well understood. To identify key genes and pathways that regulate the process, we performed a transcriptome analysis in petunia corolla at four developmental stages, including corolla fully opening without anther dehiscence (D0), corolla expansion, 2 days after anthesis (D2), corolla with initial signs of senescence (D4), and wilting corolla (D7). We identified large numbers of differentially expressed genes (DEGs), ranging from 4626 between the transition from D0 and D2, 1116 between D2 and D4, a transition to the onset of flower senescence, and 327 between D4 and D7, a developmental stage representing flower senescence. KEGG analysis showed that the auxin- and ethylene-related hormone biosynthesis and signaling transduction pathways were significantly activated during the flower development and highly upregulated at onset of flower senescence. Ethylene emission was detected at the D2 to D4 transition, followed by a large eruption at the D4 to D7 transition. Furthermore, large numbers of transcription factors (TFs) were activated over the course of senescence. Functional analysis by virus-induced gene silencing (VIGS) experiments demonstrated that inhibition of the expression of TFs, such as ethylene-related ERF, auxin-related ARF, bHLH, HB, and MADS-box, significantly extended or shortened flower longevity. Our data suggest that hormonal interaction between auxin and ethylene may play critical regulatory roles in the onset of natural corolla senescence in petunia.

20.
Chem Soc Rev ; 47(8): 2609-2679, 2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-29658545

RESUMEN

A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...