Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nat Rev Microbiol ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789668

RESUMEN

Foodborne illnesses pose a substantial health and economic burden, presenting challenges in prevention due to the diverse microbial hazards that can enter and spread within food systems. Various factors, including natural, political and commercial drivers, influence food production and distribution. The risks of foodborne illness will continue to evolve in step with these drivers and with changes to food systems. For example, climate impacts on water availability for agriculture, changes in food sustainability targets and evolving customer preferences can all have an impact on the ecology of foodborne pathogens and the agrifood niches that can carry microorganisms. Whole-genome and metagenome sequencing, combined with microbial surveillance schemes and insights from the food system, can provide authorities and businesses with transformative information to address risks and implement new food safety interventions across the food chain. In this Review, we describe how genome-based approaches have advanced our understanding of the evolution and spread of enduring bacterial foodborne hazards as well as their role in identifying emerging foodborne hazards. Furthermore, foodborne hazards exist in complex microbial communities across the entire food chain, and consideration of these co-existing organisms is essential to understanding the entire ecology supporting pathogen persistence and transmission in an evolving food system.

2.
PLoS One ; 19(4): e0302127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662734

RESUMEN

OBJECTIVES: To assess whether different cervical spine immobilisation strategies (full immobilisation, movement minimisation or no immobilisation), impact neurological and/or other outcomes for patients with suspected cervical spinal injury in the pre-hospital and emergency department setting. DESIGN: Systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. DATA SOURCES: MEDLINE, EMBASE, CINAHL, Cochrane Library and two research registers were searched until September 2023. ELIGIBILITY CRITERIA: All comparative studies (prospective or retrospective) that examined the potential benefits and/or harms of immobilisation practices during pre-hospital and emergency care of patients with a potential cervical spine injury (pre-imaging) following blunt trauma. DATA EXTRACTION AND SYNTHESIS: Two authors independently selected and extracted data. Risk of bias was appraised using the Cochrane ROBINS-I tool for non-randomised studies. Data were synthesised without meta-analysis. RESULTS: Six observational studies met the inclusion criteria. The methodological quality was variable, with most studies having serious or critical risk of bias. The effect of cervical spine immobilisation practices such as full immobilisation or movement minimisation during pre-hospital and emergency care did not show clear evidence of benefit for the prevention of neurological deterioration, spinal injuries and death compared with no immobilisation. However, increased pain, discomfort and anatomical complications were associated with collar application during immobilisation. CONCLUSIONS: Despite the limited evidence, weak designs and limited generalisability, the available data suggest that pre-hospital cervical spine immobilisation (full immobilisation or movement minimisation) was of uncertain value due to the lack of demonstrable benefit and may lead to potential complications and adverse outcomes. High-quality randomised comparative studies are required to address this important question. TRIAL REGISTRATION: PROSPERO REGISTRATION Fiona Lecky, Abdullah Pandor, Munira Essat, Anthea Sutton, Carl Marincowitz, Gordon Fuller, Stuart Reid, Jason Smith. A systematic review of cervical spine immobilisation following blunt trauma in pre-hospital and emergency care. PROSPERO 2022 CRD42022349600 Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022349600.


Asunto(s)
Vértebras Cervicales , Servicios Médicos de Urgencia , Inmovilización , Traumatismos Vertebrales , Heridas no Penetrantes , Humanos , Vértebras Cervicales/lesiones , Heridas no Penetrantes/terapia , Traumatismos Vertebrales/terapia , Servicio de Urgencia en Hospital
3.
JAMA ; 330(19): 1862-1871, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37824132

RESUMEN

Importance: Bleeding is the most common cause of preventable death after trauma. Objective: To determine the effectiveness of resuscitative endovascular balloon occlusion of the aorta (REBOA) when used in the emergency department along with standard care vs standard care alone on mortality in trauma patients with exsanguinating hemorrhage. Design, Setting, and Participants: Pragmatic, bayesian, randomized clinical trial conducted at 16 major trauma centers in the UK. Patients aged 16 years or older with exsanguinating hemorrhage were enrolled between October 2017 and March 2022 and followed up for 90 days. Intervention: Patients were randomly assigned (1:1 allocation) to a strategy that included REBOA and standard care (n = 46) or standard care alone (n = 44). Main Outcomes and Measures: The primary outcome was all-cause mortality at 90 days. Ten secondary outcomes included mortality at 6 months, while in the hospital, and within 24 hours, 6 hours, or 3 hours; the need for definitive hemorrhage control procedures; time to commencement of definitive hemorrhage control procedures; complications; length of stay; blood product use; and cause of death. Results: Of the 90 patients (median age, 41 years [IQR, 31-59 years]; 62 [69%] were male; and the median Injury Severity Score was 41 [IQR, 29-50]) randomized, 89 were included in the primary outcome analysis because 1 patient in the standard care alone group declined to provide consent for continued participation and data collection 4 days after enrollment. At 90 days, 25 of 46 patients (54%) had experienced all-cause mortality in the REBOA and standard care group vs 18 of 43 patients (42%) in the standard care alone group (odds ratio [OR], 1.58 [95% credible interval, 0.72-3.52]; posterior probability of an OR >1 [indicating increased odds of death with REBOA], 86.9%). Among the 10 secondary outcomes, the ORs for mortality and the posterior probabilities of an OR greater than 1 for 6-month, in-hospital, and 24-, 6-, or 3-hour mortality were all increased in the REBOA and standard care group, and the ORs were increased with earlier mortality end points. There were more deaths due to bleeding in the REBOA and standard care group (8 of 25 patients [32%]) than in standard care alone group (3 of 18 patients [17%]), and most occurred within 24 hours. Conclusions and Relevance: In trauma patients with exsanguinating hemorrhage, a strategy of REBOA and standard care in the emergency department does not reduce, and may increase, mortality compared with standard care alone. Trial Registration: isrctn.org Identifier: ISRCTN16184981.


Asunto(s)
Oclusión con Balón , Exsanguinación , Humanos , Masculino , Adulto , Femenino , Exsanguinación/complicaciones , Teorema de Bayes , Estudios Retrospectivos , Hemorragia/etiología , Hemorragia/terapia , Aorta , Oclusión con Balón/efectos adversos , Oclusión con Balón/métodos , Resucitación/métodos , Puntaje de Gravedad del Traumatismo , Servicio de Urgencia en Hospital , Reino Unido
4.
Artículo en Inglés | MEDLINE | ID: mdl-37718477

RESUMEN

There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated.

5.
Appl Opt ; 62(7): B73-B78, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132888

RESUMEN

This work presents the characterization of the optical and mechanical properties of thin films based on (T a 2 O 5)1-x (S i O 2)x mixed oxides deposited by microwave plasma assisted co-sputtering, including post-annealing treatments. The deposition of low mechanical loss materials (3×10-5) with a high refractive index (1.93) while maintaining low processing costs was achieved and the following trends were demonstrated: The energy band gap increased as the S i O 2 concentration was increased in the mixture, and the disorder constant decreased when the annealing temperatures increased. Annealing of the mixtures also showed positive effects to reduce the mechanical losses and the optical absorption. This demonstrates their potential as an alternative high-index material for optical coatings in gravitational wave detectors using a low-cost process.

6.
Appl Opt ; 62(7): B209-B221, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132933

RESUMEN

Coating thermal noise (CTN) in amorphous coatings is a drawback hindering their application in precision experiments such as gravitational wave detectors (GWDs). Mirrors for GWDs are Bragg's reflectors consisting of a bilayer-based stack of high- and low-refractive-index materials showing high reflectivity and low CTN. In this paper, we report the characterization of morphological, structural, optical, and mechanical properties of high-index materials such as scandium sesquioxide and hafnium dioxide and a low-index material such as magnesium fluoride deposited by plasma ion-assisted electron beam evaporation. We also evaluate their properties under different annealing treatments and discuss their potential for GWDs.

7.
Microb Genom ; 8(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35997596

RESUMEN

Plasmids are mobile elements that can carry genes encoding traits of clinical concern, including antimicrobial resistance (AMR) and virulence. Population-level studies of Enterobacterales, including Escherichia coli, Shigella and Klebsiella, indicate that plasmids are important drivers of lineage expansions and dissemination of AMR genes. Salmonella Typhimurium is the second most common cause of salmonellosis in humans and livestock in the UK and Europe. The long-term dynamics of plasmids between S. Typhimurium were investigated using isolates collected through national surveillance of animals in England and Wales over a 25-year period. The population structure of S. Typhimurium and its virulence plasmid (where present) were inferred through phylogenetic analyses using whole-genome sequence data for 496 isolates. Antimicrobial resistance genes and plasmid markers were detected in silico. Phenotypic plasmid characterization, using the Kado and Liu method, was used to confirm the number and size of plasmids. The differences in AMR and plasmids between clades were striking, with livestock clades more likely to carry one or more AMR plasmid and be multi-drug-resistant compared to clades associated with wildlife and companion animals. Multiple small non-AMR plasmids were distributed across clades. However, all hybrid AMR-virulence plasmids and most AMR plasmids were highly clade-associated and persisted over decades, with minimal evidence of horizontal transfer between clades. This contrasts with the role of plasmids in the short-term dissemination of AMR between diverse strains in other Enterobacterales in high-antimicrobial-use settings, with implications for predicting plasmid dissemination amongst S. Typhimurium.


Asunto(s)
Antiinfecciosos , Salmonella typhimurium , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Humanos , Filogenia , Plásmidos/genética , Salmonella typhimurium/genética , Virulencia/genética
8.
Bone Rep ; 16: 101592, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35637974

RESUMEN

Objective: Characterise the spatiotemporal responses of trabecular and cortical bone to complete spinal cord injury (SCI) in the skeletally mature rat in the acute (4-week) period following injury. Methods: The spinal cord of 5-month old male rats was transected at the T9 level. Outcome measures were assessed using micro-computed tomography, three-point bending and serum markers at 1-, 2-, and 4-weeks post-transection. Comparison was made with time-0 and sham animals. Results: Lower levels of circulating serum bone formation markers and higher bone resorption markers suggested uncoupled bone turnover as early at 1-week post-transection. Micro-computed tomography showed metaphyseal and epiphyseal trabecular bone loss was observed only at 4-weeks post-transection. The bone loss was site-specific with a more severe reduction in trabecular BV/TV observed in the metaphyseal (50%) relative to epiphyseal (19%) region. Metaphyseal trabecular bone exhibited a 54% reduction in connectivity density while the epiphyseal trabecular bone was unaffected. Cortical bone deficits were not seen over the time periods examined. Conclusions: The study demonstrates that the skeletally mature spinal cord transected rat model replicates the biphasic pattern of osteoporotic changes observed in the human SCI population, providing a relevant model for testing the efficacy of interventions against SCI-induced osteoporosis.

9.
Sci Rep ; 11(1): 22741, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815449

RESUMEN

Models of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFß1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular , Técnicas de Cocultivo/métodos , Osteoclastos/citología , Osteogénesis , Vibración , Células de la Médula Ósea/metabolismo , Humanos , Nanotecnología , Osteoclastos/metabolismo , Osteoclastos/patología
10.
Sci Adv ; 7(9)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33637520

RESUMEN

Bioactive metabolites have wide-ranging biological activities and are a potential source of future research and therapeutic tools. Here, we use nanovibrational stimulation to induce osteogenic differentiation of mesenchymal stem cells, in the absence of off-target, nonosteogenic differentiation. We show that this differentiation method, which does not rely on the addition of exogenous growth factors to culture media, provides an artifact-free approach to identifying bioactive metabolites that specifically and potently induce osteogenesis. We first identify a highly specific metabolite, cholesterol sulfate, an endogenous steroid. Next, a screen of other small molecules with a similar steroid scaffold identified fludrocortisone acetate with both specific and highly potent osteogenic-inducing activity. Further, we implicate cytoskeletal contractility as a measure of osteogenic potency and cell stiffness as a measure of specificity. These findings demonstrate that physical principles can be used to identify bioactive metabolites and then enable optimization of metabolite potency can be optimized by examining structure-function relationships.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo
11.
Front Genet ; 12: 783970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096006

RESUMEN

Colorectal cancer (CRC) is a common, multifactorial disease. While observational studies have identified an association between lower vitamin D and higher CRC risk, supplementation trials have been inconclusive and the mechanisms by which vitamin D may modulate CRC risk are not well understood. We sought to perform a weighted gene co-expression network analysis (WGCNA) to identify modules present after vitamin D supplementation (when plasma vitamin D level was sufficient) which were absent before supplementation, and then to identify influential genes in those modules. The transcriptome from normal rectal mucosa biopsies of 49 individuals free from CRC were assessed before and after 12 weeks of 3200IU/day vitamin D (Fultium-D3) supplementation using paired-end total RNAseq. While the effects on expression patterns following vitamin D supplementation were subtle, WGCNA identified highly correlated genes forming gene modules. Four of the 17 modules identified in the post-vitamin D network were not preserved in the pre-vitamin D network, shedding new light on the biochemical impact of supplementation. These modules were enriched for GO terms related to the immune system, hormone metabolism, cell growth and RNA metabolism. Across the four treatment-associated modules, 51 hub genes were identified, with enrichment of 40 different transcription factor motifs in promoter regions of those genes, including VDR:RXR. Six of the hub genes were nominally differentially expressed in studies of vitamin D effects on adult normal mucosa organoids: LCN2, HLA-C, AIF1L, PTPRU, PDE4B and IFI6. By taking a gene-correlation network approach, we have described vitamin D induced changes to gene modules in normal human rectal epithelium in vivo, the target tissue from which CRC develops.

12.
Comput Methods Programs Biomed ; 200: 105826, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33187733

RESUMEN

BACKGROUND: In this work we describe a breath emulator system, used to simulate temporal characteristics of exhaled carbon dioxide (CO2) concentration waveform versus time simulating how much CO2 is present at each phase of the human lung respiratory process. The system provides a method for testing capnometers incorporating fast response non-dispersive infrared (NDIR) CO2 gas sensing devices - in a clinical setting, capnography devices assess ventilation which is the CO2 movement in and out of the lungs. A mathematical model describing the waveform of the expired CO2 characteristic and influence of CO2 gas sensor noise factors and speed of response is presented and compared with measured and emulated data. OBJECTIVE: A range of emulated capnogram temporal waveforms indicative of normal and restricted respiratory function demonstrated. The system can provide controlled introduction of water vapour and/ or other gases, simulating the influence of water vapour in exhaled breath and presence of other gases in a clinical setting such as anaesthetic agents (eg N2O). This enables influence of water vapour and/ or other gases to be assessed and modelled in the performance of CO2 gas sensors incorporated into capnography systems. As such the breath emulator provides a means of controlled testing of capnometer CO2 gas sensors in a non-clinical setting, allowing device optimisation before use in a medical environment. METHODS: The breath emulator uses a unique combination of mass flow controllers, needle valves and a fast acting switchable pneumatic solenoid valve (FASV), used to controllably emulate exhaled CO2 temporal waveforms for normal and restricted respiratory function. Output data from the described emulator is compared with a mathematical model using a range of input parameters such as time constants associated with inhalation/ exhalation for different parts of the respiratory cycle and CO2 concentration levels. Sensor noise performance is modelled, taking into account input parameters such as sampling period, sensor temperature, sensing light throughput and pathlength. RESULTS: The system described here produces realistic human capnographic waveforms and has the capability to emulate various waveforms associated with chronic respiratory diseases and early stage detection of exacerbations. The system has the capability of diagnosing medical conditions through analysis of CO2 waveforms. Demonstrated in this work the emulator has been used to test NDIR gas sensor technology deployed in capnometer devices prior to formal clinical trialling.


Asunto(s)
Capnografía , Dióxido de Carbono , Pruebas Respiratorias , Simulación por Computador , Humanos , Pulmón , Respiración
13.
Biochem J ; 477(17): 3349-3366, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32941644

RESUMEN

Twenty-five years have passed since the first clinical trial utilising mesenchymal stomal/stem cells (MSCs) in 1995. In this time academic research has grown our understanding of MSC biochemistry and our ability to manipulate these cells in vitro using chemical, biomaterial, and mechanical methods. Research has been emboldened by the promise that MSCs can treat illness and repair damaged tissues through their capacity for immunomodulation and differentiation. Since 1995, 31 therapeutic products containing MSCs and/or progenitors have reached the market with the level of in vitro manipulation varying significantly. In this review, we summarise existing therapeutic products containing MSCs or mesenchymal progenitor cells and examine the challenges faced when developing new therapeutic products. Successful progression to clinical trial, and ultimately market, requires a thorough understanding of these hurdles at the earliest stages of in vitro pre-clinical development. It is beneficial to understand the health economic benefit for a new product and the reimbursement potential within various healthcare systems. Pre-clinical studies should be selected to demonstrate efficacy and safety for the specific clinical indication in humans, to avoid duplication of effort and minimise animal usage. Early consideration should also be given to manufacturing: how cell manipulation methods will integrate into highly controlled workflows and how they will be scaled up to produce clinically relevant quantities of cells. Finally, we summarise the main regulatory pathways for these clinical products, which can help shape early therapeutic design and testing.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Factores Inmunológicos , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Animales , Humanos , Factores Inmunológicos/metabolismo , Factores Inmunológicos/uso terapéutico
14.
ACS Nano ; 14(8): 10027-10044, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32658450

RESUMEN

There is a pressing clinical need to develop cell-based bone therapies due to a lack of viable, autologous bone grafts and a growing demand for bone grafts in musculoskeletal surgery. Such therapies can be tissue engineered and cellular, such as osteoblasts, combined with a material scaffold. Because mesenchymal stem cells (MSCs) are both available and fast growing compared to mature osteoblasts, therapies that utilize these progenitor cells are particularly promising. We have developed a nanovibrational bioreactor that can convert MSCs into bone-forming osteoblasts in two- and three-dimensional, but the mechanisms involved in this osteoinduction process remain unclear. Here, to elucidate this mechanism, we use increasing vibrational amplitude, from 30 nm (N30) to 90 nm (N90) amplitudes at 1000 Hz and assess MSC metabolite, gene, and protein changes. These approaches reveal that dose-dependent changes occur in MSCs' responses to increased vibrational amplitude, particularly in adhesion and mechanosensitive ion channel expression and that energetic metabolic pathways are activated, leading to low-level reactive oxygen species (ROS) production and to low-level inflammation as well as to ROS- and inflammation-balancing pathways. These events are analogous to those that occur in the natural bone-healing processes. We have also developed a tissue engineered MSC-laden scaffold designed using cells' mechanical memory, driven by the stronger N90 stimulation. These mechanistic insights and cell-scaffold design are underpinned by a process that is free of inductive chemicals.


Asunto(s)
Células Madre Mesenquimatosas , Diferenciación Celular , Humanos , Inflamación , Osteogénesis , Especies Reactivas de Oxígeno , Ingeniería de Tejidos , Andamios del Tejido
15.
J Biosci Bioeng ; 129(3): 379-386, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31623950

RESUMEN

Bacterial biofilms pose a significant burden in both healthcare and industrial environments. With the limited effectiveness of current biofilm control strategies, novel or adjunctive methods in biofilm control are being actively pursued. Reported here, is the first evidence of the application of nanovibrational stimulation (nanokicking) to reduce the biofilm formation of Pseudomonas aeruginosa. Nanoscale vertical displacements (approximately 60 nm) were imposed on P. aeruginosa cultures, with a significant reduction in biomass formation observed at frequencies between 200 and 4000 Hz at 24 h. The optimal reduction of biofilm formation was observed at 1 kHz, with changes in the physical morphology of the biofilms. Scanning electron microscope imaging of control and biofilms formed under nanovibrational stimulation gave indication of a reduction in extracellular matrix (ECM). Quantification of the carbohydrate and protein components of the ECM was performed and showed a significant reduction at 24 h at 1 kHz frequency. To model the forces being exerted by nanovibrational stimulation, laser interferometry was performed to measure the amplitudes produced across the Petri dish surfaces. Estimated peak forces on each cell, associated with the nanovibrational stimulation technique, were calculated to be in the order of 10 pN during initial biofilm formation. This represents a potential method of controlling microbial biofilm formation in a number of important settings in industry and medical related processes.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa/fisiología , Biomasa , Matriz Extracelular/metabolismo , Microscopía Electrónica de Rastreo , Nanoestructuras , Vibración
16.
J Neuroeng Rehabil ; 16(1): 124, 2019 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-31655612

RESUMEN

BACKGROUND: The use of integrated robotic technology to quantify the spectrum of motor symptoms of Parkinson's Disease (PD) has the potential to facilitate objective assessment that is independent of clinical ratings. The purpose of this study is to use the KINARM exoskeleton robot to (1) differentiate subjects with PD from controls and (2) quantify the motor effects of dopamine replacement therapies (DRTs). METHODS: Twenty-six subjects (Hoehn and Yahr mean 2.2; disease duration 0.5 to 15 years) were evaluated OFF (after > 12 h of their last dose) and ON their DRTs with the Unified Parkinson's Disease Rating Scale (UPDRS) and the KINARM exoskeleton robot. Bilateral upper extremity bradykinesia, rigidity, and postural stability were quantified using a repetitive movement task to hit moving targets, a passive stretch task, and a torque unloading task, respectively. Performance was compared against healthy age-matched controls. RESULTS: Mean hand speed was 41% slower and 25% fewer targets were hit in subjects with PD OFF medication than in controls. Receiver operating characteristic (ROC) area for hand speed was 0.94. The torque required to stop elbow movement during the passive stretch task was 34% lower in PD subjects versus controls and resulted in an ROC area of 0.91. The torque unloading task showed a maximum displacement that was 29% shorter than controls and had an ROC area of 0.71. Laterality indices for speed and end total torque were correlated to the most affected side. Hand speed laterality index had an ROC area of 0.80 against healthy controls. DRT administration resulted in a significant reduction in a cumulative score of parameter Z-scores (a measure of global performance compared to healthy controls) in subjects with clinically effective levodopa doses. The cumulative score was also correlated to UPDRS scores for the effect of DRT. CONCLUSIONS: Robotic assessment is able to objectively quantify parkinsonian symptoms of bradykinesia, rigidity and postural stability similar to the UPDRS. This integrated testing platform has the potential to aid clinicians in the management of PD and help assess the effects of novel therapies.


Asunto(s)
Dispositivo Exoesqueleto , Enfermedad de Parkinson/diagnóstico , Robótica/instrumentación , Anciano , Antiparkinsonianos/uso terapéutico , Femenino , Humanos , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología
17.
Sci Rep ; 9(1): 12944, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506561

RESUMEN

In regenerative medicine, techniques which control stem cell lineage commitment are a rapidly expanding field of interest. Recently, nanoscale mechanical stimulation of mesenchymal stem cells (MSCs) has been shown to activate mechanotransduction pathways stimulating osteogenesis in 2D and 3D culture. This has the potential to revolutionise bone graft procedures by creating cellular graft material from autologous or allogeneic sources of MSCs without using chemical induction. With the increased interest in mechanical stimulation of cells and huge potential for clinical use, it is apparent that researchers and clinicians require a scalable bioreactor system that provides consistently reproducible results with a simple turnkey approach. A novel bioreactor system is presented that consists of: a bioreactor vibration plate, calibrated and optimised for nanometre vibrations at 1 kHz, a power supply unit, which supplies a 1 kHz sine wave signal necessary to generate approximately 30 nm of vibration amplitude, and custom 6-well cultureware with toroidal shaped magnets incorporated in the base of each well for conformal attachment to the bioreactor's magnetic vibration plate. The cultureware and vibration plate were designed using finite element analysis to determine the modal and harmonic responses, and validated by interferometric measurement. This helps ensure that the vibration plate and cultureware, and thus collagen and MSCs, all move as a rigid body, avoiding large deformations close to the resonant frequency of the vibration plate and vibration damping beyond the resonance. Assessment of osteogenic protein expression was performed to confirm differentiation of MSCs after initial biological experiments with the system, as well as atomic force microscopy of the 3D gel constructs during vibrational stimulation to verify that strain hardening of the gel did not occur. This shows that cell differentiation was the result of the nanovibrational stimulation provided by the bioreactor alone, and that other cell differentiating factors, such as stiffening of the collagen gel, did not contribute.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Mecanotransducción Celular , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos/métodos , Células Cultivadas , Diseño de Equipo , Humanos
18.
Phys Rev Lett ; 122(23): 231102, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31298875

RESUMEN

Planned cryogenic gravitational-wave detectors will require improved coatings with a strain thermal noise reduced by a factor of 25 compared to Advanced LIGO. We present investigations of HfO_{2} doped with SiO_{2} as a new coating material for future detectors. Our measurements show an extinction coefficient of k=6×10^{-6} and a mechanical loss of ϕ=3.8×10^{-4} at 10 K, which is a factor of 2 below that of SiO_{2}, the currently used low refractive-index coating material. These properties make HfO_{2} doped with SiO_{2} ideally suited as a low-index partner material for use with a-Si in the lower part of a multimaterial coating. Based on these results, we present a multimaterial coating design which, for the first time, can simultaneously meet the strict requirements on optical absorption and thermal noise of the cryogenic Einstein Telescope.

19.
Front Microbiol ; 10: 708, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031720

RESUMEN

Salmonella enterica subsp. enterica serovar Typhimurium is a common cause of enterocolitis in humans globally, with multidrug resistant (MDR) strains posing an enhanced threat. S. Typhimurium is also a pathogen in food-production animals, and these populations can act as reservoirs of the bacterium. Therefore, surveillance and control measures within food-production animal populations are of importance both to animal and human health and have the potential to be enhanced though improved understanding of the epidemiology of S. Typhimurium within and between food-production animal populations. Here, data from Scotland and national surveillance England and Wales data for isolates from cattle (n = 1115), chickens (n = 248) and pigs (n = 2174) collected between 2003 and 2014 were analyzed. Ecological diversity analyses and rarefaction curves were used to compare the diversity of observed antimicrobial resistance (AMR) profiles between the host species, and within host species populations. Higher AMR profile diversity was observed in isolates from pigs compared to chickens across diversity measures and isolates from cattle for three of four diversity measures. Variation in AMR profile diversity between production sectors was noted, with higher AMR diversity of isolates from broiler compared to layer chickens, breeder compared to rearer and finisher pigs and beef compared to dairy cattle. Findings indicate variation in AMR profile diversity both within and between food-production animal host species. These observations suggest alternate sources of AMR bacteria and/or variation in selective evolutionary pressures within and between food-production animal host species populations.

20.
J Autoimmun ; 98: 74-85, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30558963

RESUMEN

Alopecia areata is an autoimmune disease that results in non-scarring hair loss, and it is clinically characterised by small patches of baldness on the scalp and/or around the body. It can later progress to total loss of scalp hair (Alopecia totalis) and/or total loss of all body hair (Alopecia universalis). The rapid rate of hair loss and disfiguration caused by the condition causes anxiety on patients and increases the risks of developing psychological and psychiatric complications. Hair loss in alopecia areata is caused by lymphocytic infiltrations around the hair follicles and IFN-γ. IgG antibodies against the hair follicle cells are also found in alopecia areata sufferers. In addition, the disease coexists with other autoimmune disorders and can come secondary to infections or inflammation. However, despite the growing knowledge about alopecia areata, the aetiology and pathophysiology of disease are not well defined. In this review we discuss various genetic and environmental factors that cause autoimmunity and describe the immune mechanisms that lead to hair loss in alopecia areata patients.


Asunto(s)
Corticoesteroides/uso terapéutico , Alopecia Areata/tratamiento farmacológico , Alopecia Areata/inmunología , Folículo Piloso/patología , Linfocitos/inmunología , Cuero Cabelludo/patología , Alopecia , Alopecia Areata/genética , Animales , Autoinmunidad/genética , Movimiento Celular , Interacción Gen-Ambiente , Humanos , Inmunoglobulina G/metabolismo , Proteínas de Insectos/genética , Lectinas Tipo C/genética , Activación de Linfocitos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...