Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 116(11): 1353-64, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24699854

RESUMEN

Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein.


Asunto(s)
Sistemas de Transporte de Aminoácidos/biosíntesis , Aminoácidos/metabolismo , Proteínas en la Dieta/administración & dosificación , Proteínas de la Leche/administración & dosificación , Músculo Esquelético/fisiología , Entrenamiento de Fuerza/métodos , Proteínas de Soja/administración & dosificación , Administración Oral , Adulto , Sistemas de Transporte de Aminoácidos/efectos de los fármacos , Aminoácidos/efectos de los fármacos , Proteínas en la Dieta/metabolismo , Método Doble Ciego , Ingestión de Alimentos/fisiología , Femenino , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Proteínas de Soja/farmacocinética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Proteína de Suero de Leche , Adulto Joven
2.
Int J Sports Med ; 35(6): 476-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24234010

RESUMEN

Evidence suggests that myofibers from endurance trained skeletal muscle display unique contractile parameters. However, the underlying mechanisms remain unclear. To further elucidate the influence of endurance training on myofiber contractile function, we examined factors that may impact myofilament interactions (i. e., water content, concentration of specific protein fractions, actin and myosin content) or directly modulate myosin heavy chain (MHC) function (i. e., myosin light chain (MLC) composition) in muscle biopsy samples from highly-trained competitive (RUN) and recreational (REC) runners. Muscle water content was lower (P<0.05) in RUN (73±1%) compared to REC (75±1%) and total muscle and myofibrillar protein concentration was higher (P<0.05) in RUN, which may indicate differences in myofilament spacing. Content of the primary contractile proteins, myosin (0.99±0.08 and 1.01±0.07 AU) and actin (1.33±0.09 and 1.27±0.09 AU) in addition to the myosin to actin ratio (0.75±0.04 and 0.80±0.06 AU) was not different between REC and RUN, respectively, when expressed relative to the amount of myofibrillar protein. At the single-fiber level, slow-twitch MHC I myofibers from RUN contained less (P<0.05) MLC 1 and greater (P<0.05) amounts of MLC 3 than REC, while MLC composition was similar in fast-twitch MHC IIa myofibers between REC and RUN. These data suggest that the distinctive myofiber contractile profile in highly-trained runners may be partially explained by differences in the content of the primary contractile proteins and provides unique insight into the modulation of contractile function with extreme loading -patterns.


Asunto(s)
Actinas/análisis , Miofibrillas/química , Cadenas Pesadas de Miosina/análisis , Cadenas Ligeras de Miosina/análisis , Resistencia Física/fisiología , Carrera/fisiología , Actinas/metabolismo , Adulto , Biopsia , Agua Corporal/metabolismo , Humanos , Contracción Muscular , Miofibrillas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA