Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Clin Microbiol ; : e0036924, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819167

RESUMEN

Azole resistance screening in Aspergillus fumigatus sensu stricto can be routinely carried out by using azole-containing agar plates (E.Def 10.2 procedure); however, conidial suspension filtering and inoculum adjustment before inoculum preparation are time-consuming. We evaluated whether skipping the filtration and inoculum adjustment steps negatively influenced the performance of the E.Def 10.2 procedure. A. fumigatus sensu stricto isolates (n = 98), previously classified as azole susceptible or azole resistant (E.Def 9.4 method), were studied. Azole-resistant isolates had either the wild-type cyp51A gene sequence (n = 1) or the following cyp51A gene substitutions: TR34-L98H (n = 41), G54R (n = 5), TR46-Y121F-T289A (n = 1), or G448S (n = 1). In-house azole-containing agar plates were prepared according to the EUCAST E.Def 10.2 procedure. Conidial suspensions obtained by adding distilled water (Tween 20 0.1%) were either filtered and the inocula adjusted to 0.5 McFarland or left unfiltered and unadjusted. Agreements between the agar screening methods using inocula prepared by each procedure were high for itraconazole (99%), voriconazole (100%), and posaconazole (94.9%). Sensitivity and specificity (considering the susceptibility category as per the microdilution E.Def 9.4 method as the gold standard) of E.Def 10.2 were 100% to rule in or rule out resistance when unfiltered and unadjusted suspensions were used; the resistance phenotype of isolates harboring the TR34-L98H, G54R, or TR46-Y121F-T289A substitutions was correctly detected. Unfiltered and unadjusted conidial suspensions do not negatively influence the performance of the E.Def 10.2 method when screening for azole resistance in A. fumigatus sensu stricto. IMPORTANCE: Azole resistance screening in Aspergillus fumigatus sensu stricto can be routinely carried out by using azole-containing plates (E.Def 10.2 procedure); however, conidial suspension filtering and inoculum adjustment before inoculation of plates are time-consuming. We, here, showed that unfiltered and unadjusted conidial suspensions do not negatively influence the performance of the E.Def 10.2 method when screening for azole resistance in A. fumigatus sensu stricto.

2.
Nutrients ; 16(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542704

RESUMEN

A comprehensive understanding of gut microbiota in a clearly defined group of healthy individuals is essential when making meaningful comparisons with various diseases. The Mediterranean diet (MD), renowned for its potential health benefits, and the influence of adherence thereto on gut microbiota have become a focus of research. Our aim was to elucidate the impact of adherence to the MD on gut microbiota composition in a well-defined cohort. In this prospective study, healthy volunteers completed a questionnaire to provide demographic data, medical history, and dietary intake. Adherence was evaluated using the Med-DQI. The V4 region of the 16S rRNA gene was sequenced. Analysis of sequencing data and statistical analysis were performed using MOTHUR software and R. The study included 60 patients (51.7% females). Adherence correlated with alpha diversity, and higher values were recorded in good adherers. Good adherers had a higher abundance of Paraprevotella and Bacteroides (p < 0.001). Alpha diversity correlated inversely with fat intake and positively with non-starch polysaccharides (NSPs). Evenness correlated inversely with red meat intake and positively with NSPs. Predicted functional analysis highlighted metabolic pathway differences based on adherence to the MD. In conclusion, our study adds useful information on the relationship between the MD and the gut microbiome.


Asunto(s)
Dieta Mediterránea , Microbioma Gastrointestinal , Femenino , Humanos , Masculino , Dieta , ARN Ribosómico 16S/genética , Estudios Prospectivos , Heces
3.
Adv Exp Med Biol ; 1435: 1-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38175468

RESUMEN

Clostridioides difficile infection (CDI) remains a considerable challenge to healthcare systems worldwide. Although CDI represents a significant burden on healthcare systems in Europe, few studies have attempted to estimate the consumption of resources associated with CDI in Europe. The reported extra costs attributable to CDI vary widely according to the definitions, design, and methodologies used, making comparisons difficult to perform. In this chapter, the economic burden of healthcare facility-associated CDI in Europe will be assessed, as will other less explored areas such as the economic burden of recurrent CDI, community-acquired CDI, pediatric CDI, and CDI in outbreaks.


Asunto(s)
Infecciones por Clostridium , Infección Hospitalaria , Humanos , Niño , Estrés Financiero , Infecciones por Clostridium/epidemiología , Brotes de Enfermedades , Europa (Continente)/epidemiología
4.
Antimicrob Agents Chemother ; 67(11): e0098623, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-38092562

RESUMEN

We previously conducted a multicenter surveillance study on Candida epidemiology and antifungal resistance in Madrid (CANDIMAD study; 2019-2021), detecting an increase in fluconazole-resistant Candida parapsilosis. We here present data on isolates collected in 2022. Furthermore, we report the epidemiology and antifungal resistance trends during the entire period, including an analysis per ward of admission. Candida spp. incident isolates from blood cultures and intra-abdominal samples from patients cared for at 16 hospitals in Madrid, Spain, were tested with the EUCAST E.Def 7.3.2 method against amphotericin B, azoles, micafungin, anidulafungin, and ibrexafungerp and were molecularly characterized. In 2022, we collected 766 Candida sp. isolates (686 patients; blood cultures, 48.8%). Candida albicans was the most common species found, and Candida auris was undetected. No resistance to amphotericin B was found. Overall, resistance to echinocandins was low (0.7%), whereas fluconazole resistance was 12.0%, being higher in blood cultures (16.0%) mainly due to fluconazole-resistant C. parapsilosis clones harboring the Y132F-R398I ERG11p substitutions. Ibrexafungerp showed in vitro activity against the isolates tested. Whereas C. albicans was the dominant species in most hospital wards, we observed increasing C. parapsilosis proportions in blood. During the entire period, echinocandin resistance rates remained steadily low, while fluconazole resistance increased in blood from 6.8% (2019) to 16% (2022), mainly due to fluconazole-resistant C. parapsilosis (2.6% in 2019 to 36.6% in 2022). Up to 7 out of 16 hospitals were affected by fluconazole-resistant C. parapsilosis. In conclusion, rampant clonal spreading of C. parapsilosis fluconazole-resistant genotypes is taking place in Madrid.


Asunto(s)
Candida , Fluconazol , Humanos , Fluconazol/farmacología , Antifúngicos/farmacología , Anfotericina B/farmacología , Candida parapsilosis/genética , Tracción , Equinocandinas , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
5.
Front Cell Infect Microbiol ; 13: 1237500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780848

RESUMEN

Introduction: Clostridioides difficile infection (CDI) is the main cause of nosocomial diarrhoea in developed countries. Recurrent CDI (R-CDI), which affects 20%-30% of patients and significantly increases hospital stay and associated costs, is a key challenge. The main objective of this study was to explore the role of the microbiome and calprotectin levels as predictive biomarkers of R-CDI. Methods: We prospectively (2019-2021) included patients with a primary episode of CDI. Clinical data and faecal samples were collected. The microbiome was analysed by sequencing the hypervariable V4 region of the 16S rRNA gene on an Illumina Miseq platform. Results: We enrolled 200 patients with primary CDI, of whom 54 developed R-CDI and 146 did not. We analysed 200 primary samples and found that Fusobacterium increased in abundance, while Collinsella, Senegalimassilia, Prevotella and Ruminococcus decreased in patients with recurrent versus non-recurrent disease. Elevated calprotectin levels correlated significantly with R-CDI (p=0.01). We built a risk index for R-CDI, including as prognostic factors age, sex, immunosuppression, toxin B amplification cycle, creatinine levels and faecal calprotectin levels (overall accuracy of 79%). Discussion: Calprotectin levels and abundance of microbial genera such as Fusobacterium and Prevotella in primary episodes could be useful as early markers of R-CDI. We propose a readily available model for prediction of R-CDI that can be applied at the initial CDI episode. The use of this tool could help to better tailor treatments according to the risk of R-CDI.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbiota , Humanos , Complejo de Antígeno L1 de Leucocito , ARN Ribosómico 16S/genética , Clostridioides difficile/genética , Infecciones por Clostridium/microbiología
7.
Clin Microbiol Infect ; 29(12): 1604.e1-1604.e6, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37640239

RESUMEN

OBJECTIVES: Antifungal susceptibility testing is mostly conducted on blood-cultured Candida spp isolates. Because the intra-abdominal cavity has been highlighted as a hidden echinocandin-resistant C. glabrata reservoir, we assessed whether testing sequential isolates from a given patient might increase the chances of detecting antifungal resistance. METHODS: Intra-abdominal initial and sequential isolates from the same species from patients included in the CANDIdaemia in MADrid study (January 2019 to June 2022) were studied. We assessed antifungal susceptibility to amphotericin B, azoles, anidulafungin, micafungin, and ibrexafungerp using European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology and molecularly characterized resistant isolates. RESULTS: We collected 308 isolates (C. albicans [n = 179/308; 58.1%], C. glabrata [n = 101/308; 32.8%], C. tropicalis [n = 17/308; 5.5%], and C. parapsilosis [n = 11/308; 3.6%]) from 112 patients distributed as incident (n = 125/308) and sequential (n = 183/308). Per patient resistance rates of fluconazole (13.4% [15/112] vs. 8% [9/112]); 5.4% proportions difference (95% CI, -2.7% to 13.5%, p 0.09) and echinocandins (8.9% [10/112] vs. 1.8% [2/112]); 7.1% proportions difference (95% CI; 1.2-12.9%; p 0.01) were higher when considering all available isolates than only incident isolates. Resistance was detected in 18 of 112 patients and would have been overlooked in 11 of 18 (61.1%) patients if only incident isolates had been studied. Of the patients who harboured fluconazole or echinocandin-resistant isolates, 14 of 15 and 8 of 10 had received or were receiving fluconazole or echinocandins, respectively. DISCUSSION: Testing sequential Candida isolates from intra-abdominal samples is required to detect antifungal resistance, particularly to echinocandins, in patients whose incident isolates turned out to be susceptible. Furthermore, patients with echinocandin-resistant infections had frequently used echinocandins and had common secondary resistance acquisition.


Asunto(s)
Antifúngicos , Candida , Humanos , Antifúngicos/farmacología , Fluconazol , Equinocandinas/farmacología , Anfotericina B , Candida albicans , Candida parapsilosis , Candida tropicalis , Candida glabrata , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica
8.
J Fungi (Basel) ; 9(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37504721

RESUMEN

BACKGROUND: Candida spp., as part of the microbiota, can colonise the gastrointestinal tract. We hypothesised that genotyping Candida spp. isolates from the gastrointestinal tract could help spot genotypes able to cause invasive infections. MATERIALS/METHODS: A total of 816 isolates of C. albicans (n = 595), C. parapsilosis (n = 118), and C. tropicalis (n = 103) from rectal swabs (n = 754 patients) were studied. Genotyping was conducted using species-specific microsatellite markers. Rectal swab genotypes were compared with previously studied blood (n = 814) and intra-abdominal (n = 202) genotypes. RESULTS: A total of 36/754 patients had the same Candida spp. isolated from blood cultures, intra-abdominal samples, or both; these patients had candidemia (n = 18), intra-abdominal candidiasis (n = 11), both clinical forms (n = 1), and non-significant isolation (n = 6). Genotypes matching the rectal swab and their blood cultures (84.2%) or their intra-abdominal samples (92.3%) were found in most of the significant patients. We detected 656 genotypes from rectal swabs, 88.4% of which were singletons and 11.6% were clusters. Of these 656 rectal swab genotypes, 94 (14.3%) were also detected in blood cultures and 34 (5.2%) in intra-abdominal samples. Of the rectal swab clusters, 62.7% were previously defined as a widespread genotype. CONCLUSIONS: Our study pinpoints the gastrointestinal tract as a potential reservoir of potentially invasive Candida spp. genotypes.

9.
Front Cell Infect Microbiol ; 13: 1130701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124040

RESUMEN

Introduction: Clostridioides difficile infection (CDI) is the main cause of nosocomial diarrhea in developed countries. A key challenge in CDI is the lack of objective methods to ensure more accurate diagnosis, especially when differentiating between true infection and colonization/diarrhea of other causes. The main objective of this study was to explore the role of the microbiome as a predictive biomarker of CDI. Methods: Between 2018 and 2021, we prospectively included patients with CDI, recurrent CDI (R-CDI), non-CDI diarrhea (NO-CDI), colonization by C. difficile, and healthy individuals. Clinical data and fecal samples were collected. The microbiome was analyzed by sequencing the hypervariable V4 region of the 16S rRNA gene on an Illumina Miseq platform. The mothur bioinformatic pipeline was followed for pre-processing of raw data, and mothur and R were used for data analysis. Results: During the study period, 753 samples from 657 patients were analyzed. Of these, 247 were from patients with CDI, 43 were from patients colonized with C. difficile, 63 were from healthy individuals, 324 were from NOCDI, and 76 were from R-CDI. We found significant differences across the groups in alpha and beta diversity and in taxonomic abundance. We identified various genera as the most significant biomarkers for CDI (Bacteroides, Proteus, Paraprevotella, Robinsoniella), R-CDI (Veillonella, Fusobacterium, Lactobacillus, Clostridium sensu stricto I), and colonization by C. difficile (Parabacteroides, Faecalicoccus, Flavonifractor, Clostridium XVIII). Discussion: We observed differences in microbiome patterns between healthy individuals, colonized patients, CDI, R-CDI, and NOCDI diarrhea. We identified possible microbiome biomarkers that could prove useful in the diagnosis of true CDI infections. Further studies are warranted.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Humanos , ARN Ribosómico 16S/genética , Clostridioides difficile/genética , Infecciones por Clostridium/diagnóstico , Infecciones por Clostridium/microbiología , Heces/microbiología , Diarrea/microbiología
10.
Med Mycol ; 61(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37113026

RESUMEN

We compared the antifungal susceptibility of 92 Mucorales isolates obtained by visual inspection and spectrophotometric readings following EUCAST (European Committee on Antimicrobial Susceptibility Testing) testing. Amphotericin B minimum inhibitory concentrations (MICs) were up to 1 mg/l against most isolates and variable among species, except for Cunninghamella bertholletiae. Posaconazole MICs against most isolates were up to 1 mg/l and high against Mucor circinelloides, some Rhizopus arrhizus, and Rhizopus microsporus. Isavuconazole MICs ranged between 1 and 8 mg/l but were invariably >8 mg/l against M. circinelloides and C. bertholletiae. The agreement between MICs obtained by visual endpoint or spectrophotometric readings was moderate and higher when using the ≥90% fungal growth inhibition endpoint.


The agreement between minimum inhibitory concentration (MIC) values obtained by visual inspection or spectrophotometric readings was moderate and higher when the ≥90% fungal growth inhibition endpoint was chosen. Isavuconazole presented higher MICs than posaconazole, regardless of the inhibition endpoint used.


Asunto(s)
Itraconazol , Mucorales , Animales , Anfotericina B/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Pruebas de Sensibilidad Microbiana/veterinaria
11.
Open Forum Infect Dis ; 10(2): ofad028, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36776780

RESUMEN

Background: We aimed to describe the frequency of use and effectiveness of bezlotoxumab (BZX) and fecal microbiota transplantation (FMT) in patients with Clostridioides difficile infection (CDI) in real-world practice. Methods: This was a retrospective study conducted in a university hospital in which adult patients treated with BZX or FMT from January 2018 to April 2021 were included. The primary objective was to evaluate the effectiveness of BZX and FMT in preventing early (within 8 weeks) and late (within 1 year) CDI recurrences (rCDI). A multivariate analysis of risk factors for early recurrence was performed. Results: Of 1377 consecutive CDI episodes, 117 (8.5%) received BZX or FMT, with full information available for 100 of the episodes: 51 received BZX, and 49 received FMT. BZX was used mostly in immunosuppressed patients (66.7%) and in first episodes or first recurrences in 70.6% of the cases. FMT was prescribed only in CDI recurrences. Despite the different conditions of the patients, there were no significant differences between BZX and FMT in preventing early rCDI (19.6% vs 24.5%; P = .55) or late rCDI (9.8% vs 18.4%; P = .31). In the multivariate analysis, risk factors for recurrence were presence of ≥2 previous rCDI episodes (odds ratio [OR], 2.90; 95% CI, 1.03-8.63) and use of non-CDI antibiotics (OR, 3.45; 95% CI, 1.24-9.57). Conclusions: BZX and FMT were infrequently used in real-world practice. Both treatments had similar effectiveness in preventing CDI recurrence despite their application to different populations.

13.
Mycoses ; 66(3): 196-201, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36305878

RESUMEN

BACKGROUND: Studies comparing gradient diffusion strips (GDSs) and the EUCAST E.Def 9.4 microdilution method are scarce, thwarted by a low number of isolates, and restricted to selected antifungal agents. OBJECTIVES: We evaluated the performance of GDSs to detect azole resistance in A. fumigatus, including cryptic species. PATIENTS/METHODS: A. fumigatus sensu stricto (n = 89) and cryptic species (n = 52) were classified as susceptible or resistant to itraconazole, voriconazole, posaconazole and isavuconazole (EUCAST E.Def 9.4; clinical breakpoints v10). A. fumigatus sensu stricto azole-resistant isolates had the following cyp51A gene mutations: TR34 -L98H (n = 24), G54R (n = 5), TR46 -Y121F-T289A (n = 1), F46Y-M172V-N248T-D255E-E427K (n = 1), F165L (n = 1) and cyp51A gene wild type (n = 3). GDSs (ETEST®, bioMèrieux, Marcy-l'Etoile, France and Liofilchem®, Roseto degli Abruzzi, Italy) MICs were obtained by following the manufacturer's guidelines. RESULTS: For A. fumigatus sensu stricto, itraconazole MICs >1.5 mg/L, voriconazole >0.38 mg/L, posaconazole >0.75 mg/L, and isavuconazole >0.5 mg/L correctly separated resistant from susceptible isolates with two exceptions. Considering the aforementioned cut-off MICs, sensitivity/specificity values of GDSs to detect azole resistance were: itraconazole (97%/100%), voriconazole (97%/100%), posaconazole (97%/100%) and isavuconazole (93.3%/100%). For cryptic species isolates, voriconazole MICs >1 mg/L and isavuconazole >0.75 mg/L separated resistant isolates from susceptible isolates with 15 and 27 exceptions, respectively. Considering the aforementioned cut-off MICs, sensitivity/specificity values were as follows: voriconazole (68.1%/100%) and isavuconazole (25%/100%). For itraconazole and posaconazole, it was not possible to establish cut-off values. CONCLUSIONS: We set tentative cut-off MIC values to correctly spot resistant Aspergillus fumigatus sensu stricto isolates using GDSs. The performance against cryptic species was poor.


Asunto(s)
Aspergillus fumigatus , Azoles , Humanos , Azoles/farmacología , Itraconazol/farmacología , Voriconazol/farmacología , Proteínas Fúngicas/genética , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana
14.
J Fungi (Basel) ; 8(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422050

RESUMEN

BACKGROUND: Candidaemia and invasive candidiasis are typically hospital-acquired. Genotyping isolates from patients admitted to different hospitals may be helpful in tracking clones spreading across hospitals, especially those showing antifungal resistance. METHODS: We characterized Candida clusters by studying Candida isolates (C. albicans, n = 1041; C. parapsilosis, n = 354, and C. tropicalis, n = 125) from blood cultures (53.8%) and intra-abdominal samples (46.2%) collected as part of the CANDIMAD (Candida in Madrid) study in Madrid (2019-2021). Species-specific microsatellite markers were used to define the genotypes of Candida spp. found in a single patient (singleton) or several patients (cluster) from a single hospital (intra-hospital cluster) or different hospitals (widespread cluster). RESULTS: We found 83 clusters, of which 20 were intra-hospital, 49 were widespread, and 14 were intra-hospital and widespread. Some intra-hospital clusters were first detected before the onset of the COVID-19 pandemic, but the number of clusters increased during the pandemic, especially for C. parapsilosis. The proportion of widespread clusters was significantly higher for genotypes found in both compartments than those exclusively found in either the blood cultures or intra-abdominal samples. Most C. albicans- and C. tropicalis-resistant genotypes were singleton and presented exclusively in either blood cultures or intra-abdominal samples. Fluconazole-resistant C. parapsilosis isolates belonged to intra-hospital clusters harboring either the Y132F or G458S ERG11p substitutions; the dominant genotype was also widespread. CONCLUSIONS: the number of clusters-and patients involved-increased during the COVID-19 pandemic mainly due to the emergence of fluconazole-resistant C. parapsilosis genotypes.

15.
Front Med (Lausanne) ; 9: 953724, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072952

RESUMEN

Information on Clostridioides difficile infection (CDI) in patients with COVID-19 is scarce and points to an overall decrease of episodes during the pandemic. This situation results paradoxical, as COVID-19 patients had long periods of hospital stay and high use of antibiotics. We conducted a retrospective study from January 1st 2019 to December 31st 2020 comparing the incidence of hospital-acquired episodes of CDI (HA-CDI) among patients with and without COVID-19 admitted to our institution. During the study period, there were 47,048 patient admissions in 2019, 35,662 admissions of patients without COVID-19 in 2020 and 6,763 of COVID-19 patients. There were 68 episodes of HA-CDI in COVID-19 patients (14.75/10,000 days), 159 in 2020-non-COVID-19 patients (5.54/10,000 days) and 238 in 2019 (6.80/10,000 days). Comparison of HA-CDI in COVID-19 and non-COVID-19 patients indicates it occurs more frequently, in terms of CDI disease severity, COVID-19 does not seem to have a negative impact.

16.
J Antimicrob Chemother ; 77(11): 3102-3109, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36031723

RESUMEN

OBJECTIVES: We prospectively monitored the epidemiology and antifungal susceptibility of Candida spp. from blood cultures and intra-abdominal samples in patients admitted to hospitals in the Madrid area. METHODS: Between 2019 and 2021, we prospectively collected incident isolates [one per species, patient and compartment (blood cultures versus intra-abdominal samples)] from patients admitted to any of 16 hospitals located in Madrid. We studied the antifungal susceptibilities to amphotericin B, triazoles, micafungin, anidulafungin and ibrexafungerp following the EUCAST E.Def 7.3.2 procedure. RESULTS: A total of 2107 Candida spp. isolates (1895 patients) from blood cultures (51.7%) and intra-abdominal samples were collected. Candida albicans, the Candida glabrata complex, the Candida parapsilosis complex, Candida tropicalis and Candida krusei accounted for 96.9% of the isolates; in contrast, Candida auris was undetected. Fluconazole resistance in Candida spp. was higher in blood cultures than in intra-abdominal samples (9.1% versus 8.2%; P > 0.05), especially for the C. parapsilosis complex (16.6% versus 3.6%, P < 0.05), whereas echinocandin resistance tended to be lower in blood cultures (0.5% versus 1.0%; P > 0.05). Resistance rates have risen, particularly for fluconazole in blood culture isolates, which increased sharply in 2021. Ibrexafungerp showed in vitro activity against most isolates. Species distributions and resistance rates varied among hospitals. CONCLUSIONS: Whereas no C. auris isolates were detected, fluconazole-resistant C. parapsilosis isolates have been spreading across the region and this has pulled up the rate of fluconazole resistance. In contrast, the rate of echinocandin resistance continues to be low.


Asunto(s)
Candida parapsilosis , Equinocandinas , Humanos , Equinocandinas/farmacología , Fluconazol , Candida , Antifúngicos/farmacología , Candida auris , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica
17.
Antimicrob Agents Chemother ; 66(9): e0084922, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35924916

RESUMEN

Previous studies show high agreement between MIC spectrophotometric readings and visual inspection of azoles and amphotericin B against Aspergillus fumigatus isolates. Here, we tested and compared the in vitro activity of a novel antifungal, olorofim, against Aspergillus spp., Scedosporium spp., and Lomentospora prolificans by visual inspection and spectrophotometric readings. Clinical isolates of Aspergillus (n = 686) and Scedosporium (n = 36) spp. and L. prolificans (n = 13) were tested. Olorofim MICs were evaluated-following the EUCAST E.Def 9.4 procedure-by visual inspection or spectrophotometric readings (combinations of either ≥90% or ≥95% fungal growth inhibition endpoints compared to drug-free control endpoints and different wavelengths [405 nm, 450 nm, 492 nm, 540 nm, and 620 nm]). We observed high in vitro activity of olorofim against all tested Aspergillus spp. (MICs up to 0.06 mg/L), except for A. calidoustus, and against L. prolificans and Scedosporium spp. (MICs up to 0.125 mg/L). The combination of ≥90% fungal growth inhibition endpoints at wavelengths of ≥492 nm resulted in high essential agreements with A. fumigatus and lesser agreement with non-fumigatus Aspergillus, Scedosporium spp., and L. prolificans, although the number of isolates studied was low. This single-center study shows high agreement among olorofim MICs against A. fumigatus by visual inspection and spectrophotometric readings (≥90% fungal growth inhibition endpoints and wavelengths of ≥492 nm) and encouraging results against non-fumigatus Aspergillus spp., Scedosporium spp., and L. prolificans.


Asunto(s)
Scedosporium , Acetamidas , Anfotericina B/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergillus , Piperazinas , Pirimidinas , Pirroles/farmacología
18.
Mycoses ; 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35796747

RESUMEN

BACKGROUND: Azole resistance screening in A. fumigatus isolates can be routinely carried out by using azole-containing plates (E.Def 10.2 method), that requires filtering conidial suspensions prior inoculum adjustment. OBJECTIVES: We evaluated whether skipping the filtration step of conidial suspensions negatively influences the performance of the E.Def 10.2. Patients/Methods A. fumigatus sensu stricto isolates (n=92), classified as azole-susceptible or azole-resistant according to the EUCAST microdilution E.Def 9.4 method, were studied. Azole-resistant isolates had either wild type cyp51A gene sequence (n = 3) or the TR34 -L98H (n = 26), G54R (n = 5), TR46 -Y121F-T289A (n = 1), F46Y-M172V-N248T-D255E-E427K (n = 1), F165L (n=1), or G448S (n=1) cyp51A gene substitutions. In-house azole-containing agar plates were prepared according to the EUCAST E.Def 10.2 procedure. Conidial suspensions were obtained by adding distilled water (Tween 20 0.1%). Subsequently, the suspensions were either filtered or left unfiltered prior to inoculum adjustment to 0.5 McFarland. Using microdilution as the gold standard, agreement, sensitivity, and specificity of the agar plates inoculated with two inoculums were assessed. RESULTS: Agreements for the agar screening method with either unfiltered or filtered conidial suspensions were high for itraconazole (100%), voriconazole (100%), and posaconazole (97.8%). Sensitivity (100%) and specificity (98.2%) of the procedure to rule in or out resistance when unfiltered suspensions were used were also high. Isolates harbouring the TR34 -L98H, G54R, and TR46 -Y121F-T289A substitutions were detected with the modified method. CONCLUSIONS: Unfiltered conidial suspensions does not negatively influence the performance of the E.Def 10.2 method when screening for A. fumigatus sensu stricto.

19.
Antimicrob Agents Chemother ; 66(8): e0071022, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35852369

RESUMEN

We have been monitoring the antifungal resistance in Candida parapsilosis isolates collected from inpatients at Madrid metropolitan area hospitals for the last 3 years. The study aimed to elucidate the presence of fluconazole-resistant C. parapsilosis genotypes in Madrid. From January 2019 to December 2021, a total of 354 C. parapsilosis isolates (n = 346 patients) from blood (76.6%) or intraabdominal samples were collected and genotyped using species-specific microsatellite markers. Antifungal susceptibilities to amphotericin B, the triazoles, micafungin, anidulafungin, and ibrexafungerp were performed according to EUCAST E.Def 7.3.2; the ERG11 gene was sequenced in fluconazole-resistant isolates. A total of 13.6% (n = 48/354) isolates (one per patient) were found to be resistant to fluconazole and non-wild-type to voriconazole but fully susceptible to ibrexafungerp. Resistant isolates were mostly sourced from blood (n = 45/48, 93.8%) and were detected in five hospitals. Two hospitals accounted for a high proportion of resistant isolates (n = 41/48). Resistant isolates harbored either the Y132F ERG11p amino acid substitution (n = 43) or the G458S substitution (n = 5). Isolates harboring the Y132F substitution clustered into a clonal complex involving three genotypes (one genotype accounted for n = 39/43 isolates) that were found in four hospitals. Isolates harboring the G458S substitution clustered into another genotype found in a fifth hospital. C. parapsilosis genotypes demonstrating resistance to fluconazole have been spreading across hospitals in Madrid, Spain. Over the last 3 years, the frequency of isolation of such isolates and the number of hospitals affected is on the rise.


Asunto(s)
Candida parapsilosis , Fluconazol , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida parapsilosis/genética , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Genotipo , Hospitales , Humanos , Pruebas de Sensibilidad Microbiana , España/epidemiología
20.
Clin Microbiol Infect ; 28(9): 1291.e7-1291.e10, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35597509

RESUMEN

OBJECTIVES: New antifungal drugs, such as olorofim, may overcome the problem of resistance in Aspergillus fumigatus. We here report the activity of olorofim against a set of A. fumigatus sensu lato recently collected in Spain. METHODS: A total of 332 A. fumigatus sensu lato clinical isolates collected in a multicentre study conducted in Spain in 2019 and comprising susceptible and resistant isolates to azoles and/or amphotericin B were tested. Isolates distributed among the following species: A. fumigatus sensu stricto (n = 312), Aspergillus lentulus (n = 6), Aspergillus fumigatiaffinis (n = 5), Neosartorya tsurutae (n = 3), Neosartorya udagawae (n = 3), Aspergillus novofumigatus (n = 2), and Aspergillus thermomutatus (n = 1). Azole resistance was found in 44 A. fumigatus sensu stricto isolates that harboured the following cyp51A gene substitutions: TR34-L98H (n = 24), G54 (n = 5), TR46/Y121F/T289A (n = 1), other mutations (n = 4), and gene wild type (n = 10). Isolates were tested for antifungal susceptibility to olorofim using European Committee on Antimicrobial Susceptibility Testing (EUCAST) E.Def. 9.4 methodology. RESULTS: Olorofim minimum inhibitory concentrations against A. fumigatus sensu stricto isolates ranged from 0.008 to 0.125 mg/L and in vitro activity of the drug was not impacted by the presence of azole/amphotericin B resistance. Azole resistance and amphotericin B resistance was found in 18 and 13 cryptic species isolates, respectively. Olorofim showed high in vitro activity against cryptic species isolates and minimum inhibitory concentrations ranged from 0.004 to 0.016 mg/L, regardless of the presence of resistance to other drugs. DISCUSSION: Olorofim showed in vitro activity against both A. fumigatus sensu stricto and cryptic species clinical isolates and was active against isolates showing resistance to azoles and/or amphotericin B.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Acetamidas , Anfotericina B/farmacología , Antifúngicos/farmacología , Aspergilosis/microbiología , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Piperazinas , Pirimidinas , Pirroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...