Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 11866, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27302750

RESUMEN

CD36 transmembrane proteins have diverse roles in lipid uptake, cell adhesion and pathogen sensing. Despite numerous in vitro studies, how they act in native cellular contexts is poorly understood. A Drosophila CD36 homologue, sensory neuron membrane protein 1 (SNMP1), was previously shown to facilitate detection of lipid-derived pheromones by their cognate receptors in olfactory cilia. Here we investigate how SNMP1 functions in vivo. Structure-activity dissection demonstrates that SNMP1's ectodomain is essential, but intracellular and transmembrane domains dispensable, for cilia localization and pheromone-evoked responses. SNMP1 can be substituted by mammalian CD36, whose ectodomain can interact with insect pheromones. Homology modelling, using the mammalian LIMP-2 structure as template, reveals a putative tunnel in the SNMP1 ectodomain that is sufficiently large to accommodate pheromone molecules. Amino-acid substitutions predicted to block this tunnel diminish pheromone sensitivity. We propose a model in which SNMP1 funnels hydrophobic pheromones from the extracellular fluid to integral membrane receptors.


Asunto(s)
Antígenos CD36/química , Antígenos CD36/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Feromonas/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia Conservada/genética , Disulfuros/metabolismo , Evolución Molecular , Glicosilación , Modelos Moleculares , Dominios Proteicos , Transporte de Proteínas , Receptores de Feromonas , Homología Estructural de Proteína , Relación Estructura-Actividad
2.
PLoS Biol ; 11(4): e1001546, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637570

RESUMEN

Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate [cVA]) in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded) LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is "conformationally activated" upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors.


Asunto(s)
Drosophila melanogaster/fisiología , Neuronas/fisiología , Receptores Odorantes/metabolismo , Acetatos , Potenciales de Acción , Sustitución de Aminoácidos , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Ligandos , Masculino , Mutagénesis Sitio-Dirigida , Ácidos Oléicos/fisiología , Feromonas/fisiología , Conformación Proteica , Receptores de Superficie Celular/metabolismo , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores de Feromonas , Atractivos Sexuales/fisiología , Homología Estructural de Proteína
3.
Mol Cell Biol ; 30(15): 3749-57, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20516213

RESUMEN

mTORC1 is a central regulator of growth in response to nutrient availability, but few direct targets have been identified. RNA polymerase (pol) III produces a number of essential RNA molecules involved in protein synthesis, RNA maturation, and other processes. Its activity is highly regulated, and deregulation can lead to cell transformation. The human phosphoprotein MAF1 becomes dephosphorylated and represses pol III transcription after various stresses, but neither the significance of the phosphorylations nor the kinase involved is known. We find that human MAF1 is absolutely required for pol III repression in response to serum starvation or TORC1 inhibition by rapamycin or Torin1. The protein is phosphorylated mainly on residues S60, S68, and S75, and this inhibits its pol III repression function. The responsible kinase is mTORC1, which phosphorylates MAF1 directly. Our results describe molecular mechanisms by which mTORC1 controls human MAF1, a key repressor of RNA polymerase III transcription, and add a new branch to the signal transduction cascade immediately downstream of TORC1.


Asunto(s)
ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Humanos , Fosforilación , ARN Polimerasa III/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/metabolismo , Sirolimus/farmacología , Transfección
4.
Genome Res ; 20(6): 710-21, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20413673

RESUMEN

Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Humano , ARN Polimerasa III/genética , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , ARN de Transferencia/genética
6.
PLoS One ; 1: e134, 2006 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-17205138

RESUMEN

BACKGROUND: Human RNA polymerase III (pol III) transcription is regulated by several factors, including the tumor suppressors P53 and Rb, and the proto-oncogene c-Myc. In yeast, which lacks these proteins, a central regulator of pol III transcription, called Maf1, has been described. Maf1 is required for repression of pol III transcription in response to several signal transduction pathways and is broadly conserved in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: We show that human endogenous Maf1 can be co-immunoprecipitated with pol III and associates in vitro with two pol III subunits, the largest subunit RPC1 and the alpha-like subunit RPAC2. Maf1 represses pol III transcription in vitro and in vivo and is required for maximal pol III repression after exposure to MMS or rapamycin, treatments that both lead to Maf1 dephosphorylation. CONCLUSIONS/SIGNIFICANCE: These data suggest that Maf1 is a major regulator of pol III transcription in human cells.


Asunto(s)
ARN Polimerasa III/genética , Proteínas Represoras/metabolismo , Secuencia de Bases , Línea Celular , Cartilla de ADN/genética , Células HeLa , Humanos , Técnicas In Vitro , Metilmetanosulfonato/farmacología , Fosforilación , Regiones Promotoras Genéticas , Subunidades de Proteína , Proto-Oncogenes Mas , Interferencia de ARN , ARN Polimerasa I/genética , ARN Polimerasa II/genética , ARN Polimerasa III/química , ARN Polimerasa III/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA