Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Biotechnol ; 14(4): 1472-1493, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955667

RESUMEN

Elucidating the mechanisms controlling the synthesis of hydroxyectoine is important to design novel genetic engineering strategies for optimizing the production of this biotechnologically relevant compatible solute. The genome of the halophilic bacterium Chromohalobacter salexigens carries two ectoine hydroxylase genes, namely ectD and ectE, whose encoded proteins share the characteristic consensus motif of ectoine hydroxylases but showed only a 51.9% identity between them. In this work, we have shown that ectE encodes a secondary functional ectoine hydroxylase and that the hydroxyectoine synthesis mediated by this enzyme contributes to C.␣salexigens thermoprotection. The evolutionary pattern of EctD and EctE and related proteins suggests that they may have arisen from duplication of an ancestral gene preceding the directional divergence that gave origin to the orders Oceanospirillales and Alteromonadales. Osmoregulated expression of ectD at exponential phase, as well as the thermoregulated expression of ectD at the stationary phase, seemed to be dependent on the general stress factor RpoS. In contrast, expression of ectE was always RpoS-dependent regardless of the growth phase and osmotic or heat stress conditions tested. The data presented here suggest that the AraC-GlxA-like EctZ transcriptional regulator, whose encoding gene lies upstream of ectD, plays a dual function under exponential growth as both a transcriptional activator of osmoregulated ectD expression and a repressor of ectE transcription, privileging the synthesis of the main ectoine hydroxylase EctD. Inactivation of ectZ resulted in a higher amount of the total ectoines pool at the expenses of a higher accumulation of ectoine, with maintenance of the hydroxyectoine levels. In addition to the transcriptional control, our results suggest a strong post-transcriptional regulation of hydroxyectoine synthesis. Data on the accumulation of ectoine and hydroxyectoine in rpoS and ectZ strains pave the way for using these genetic backgrounds for metabolic engineering for hydroxyectoine production.


Asunto(s)
Chromohalobacter , Aminoácidos Diaminos , Bacterias , Chromohalobacter/genética , Cloruro de Sodio
2.
BMC Microbiol ; 12: 207, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22985230

RESUMEN

BACKGROUND: The compatible solute trehalose is involved in the osmostress response of Rhizobium etli, the microsymbiont of Phaseolus vulgaris. In this work, we reconstructed trehalose metabolism in R. etli, and investigated its role in cellular adaptation and survival to heat and desiccation stress under free living conditions. RESULTS: Besides trehalose as major compatible solute, R. etli CE3 also accumulated glutamate and, if present in the medium, mannitol. Putative genes for trehalose synthesis (otsAB/treS/treZY), uptake (aglEFGK/thuEFGK) and degradation (thuAB/treC) were scattered among the chromosome and plasmids p42a, p42c, p42e, and p42f, and in some instances found redundant. Two copies of the otsA gene, encoding trehalose-6-P-synthase, were located in the chromosome (otsAch) and plasmid p42a (otsAa), and the latter seemed to be acquired by horizontal transfer. High temperature alone did not influence growth of R. etli, but a combination of high temperature and osmotic stress was more deleterious for growth than osmotic stress alone. Although high temperature induced some trehalose synthesis by R. etli, trehalose biosynthesis was mainly triggered by osmotic stress. However, an otsAch mutant, unable to synthesize trehalose in minimal medium, showed impaired growth at high temperature, suggesting that trehalose plays a role in thermoprotection of R. etli. Desiccation tolerance by R. etli wild type cells was dependent of high trehalose production by osmotic pre-conditioned cells. Cells of the mutant strain otsAch showed ca. 3-fold lower survival levels than the wild type strain after drying, and a null viability after 4 days storage. CONCLUSIONS: Our findings suggest a beneficial effect of osmotic stress in R. etli tolerance to desiccation, and an important role of trehalose on the response of R. etli to high temperature and desiccation stress.


Asunto(s)
Desecación , Rhizobium etli/fisiología , Estrés Fisiológico , Trehalosa/metabolismo , Cromosomas Bacterianos , Regulación Bacteriana de la Expresión Génica , Calor , Redes y Vías Metabólicas/genética , Presión Osmótica , Phaseolus/microbiología , Plásmidos , Rhizobium etli/genética , Rhizobium etli/metabolismo , Rhizobium etli/efectos de la radiación , Microbiología del Suelo
3.
PLoS One ; 7(3): e33587, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22448254

RESUMEN

The disaccharide trehalose is considered as a universal stress molecule, protecting cells and biomolecules from injuries imposed by high osmolarity, heat, oxidation, desiccation and freezing. Chromohalobacter salexigens is a halophilic and extremely halotolerant γ-proteobacterium of the family Halomonadaceae. In this work, we have investigated the role of trehalose as a protectant against salinity, temperature and desiccation in C. salexigens. A mutant deficient in the trehalose-6-phosphate synthase gene (otsA::Ω) was not affected in its salt or heat tolerance, but double mutants ectoine- and trehalose-deficient, or hydroxyectoine-reduced and trehalose-deficient, displayed an osmo- and thermosensitive phenotype, respectively. This suggests a role of trehalose as a secondary solute involved in osmo- (at least at low salinity) and thermoprotection of C. salexigens. Interestingly, trehalose synthesis was osmoregulated at the transcriptional level, and thermoregulated at the post-transcriptional level, suggesting that C. salexigens cells need to be pre-conditioned by osmotic stress, in order to be able to quickly synthesize trehalose in response to heat stress. C. salexigens was more sensitive to desiccation than E. coli and desiccation tolerance was slightly improved when cells were grown at high temperature. Under these conditions, single mutants affected in the synthesis of trehalose or hydroxyectoine were more sensitive to desiccation than the wild-type strain. However, given the low survival rates of the wild type, the involvement of trehalose and hydroxyectoine in C. salexigens response to desiccation could not be firmly established.


Asunto(s)
Chromohalobacter/metabolismo , Desecación , Calor , Salinidad , Trehalosa/metabolismo , Radioisótopos de Carbono , Células Cultivadas , Chromohalobacter/genética , Chromohalobacter/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Espectroscopía de Resonancia Magnética , Mutación/genética , Concentración Osmolar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Methods Mol Biol ; 824: 167-201, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22160899

RESUMEN

Halophilic gammaproteobacteria of the family Halomonadaceae (including the genera Aidingimonas, Carnimonas, Chromohalobacter, Cobetia, Halomonas, Halotalea, Kushneria, Modicisalibacter, Salinicola, and Zymobacter) have current and promising applications in biotechnology mainly as a source of compatible solutes (powerful stabilizers of biomolecules and cells, with exciting potentialities in biomedicine), salt-tolerant enzymes, biosurfactants, and extracellular polysaccharides, among other products. In addition, they display a number of advantages to be used as cell factories, alternative to conventional prokaryotic hosts like Escherichia coli or Bacillus, for the production of recombinant proteins: (1) their high salt tolerance decreases to a minimum the necessity for aseptic conditions, resulting in cost-reducing conditions, (2) they are very easy to grow and maintain in the laboratory, and their nutritional requirements are simple, and (3) the majority can use a large range of compounds as a sole carbon and energy source. In the last 15 years, the efforts of our group and others have made possible the genetic manipulation of this bacterial group. In this review, the most relevant and recent tools for their genetic manipulation are described, with emphasis on nucleic acid isolation procedures, cloning and expression vectors, genetic exchange mechanisms, mutagenesis approaches, reporter genes, and genetic expression analyses. Complementary sections describing the influence of salinity on the susceptibility of these bacteria to antimicrobials, as well as the growth media most routinely used and culture conditions, for these microorganisms, are also included.


Asunto(s)
Biotecnología/métodos , Técnicas de Cultivo de Célula/métodos , Halomonadaceae/genética , Halomonadaceae/metabolismo , Tolerancia a la Sal/fisiología , Antiinfecciosos/farmacología , Northern Blotting/métodos , Clonación Molecular , Medios de Cultivo/química , Farmacorresistencia Microbiana/fisiología , Perfilación de la Expresión Génica/métodos , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Halomonadaceae/efectos de los fármacos , Halomonadaceae/crecimiento & desarrollo , Mutagénesis/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Especificidad de la Especie
5.
BMC Microbiol ; 10: 256, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20942908

RESUMEN

BACKGROUND: Osmosensing and associated signal transduction pathways have not yet been described in obligately halophilic bacteria. Chromohalobacter salexigens is a halophilic bacterium with a broad range of salt tolerance. In response to osmotic stress, it synthesizes and accumulates large amounts of the compatible solutes ectoine and hydroxyectoine. In a previous work, we showed that ectoines can be also accumulated upon transport from the external medium, and that they can be used as carbon sources at optimal, but not at low salinity. This was related to an insufficient ectoine(s) transport under these conditions. RESULTS: A C. salexigens Tn1732-induced mutant (CHR95) showed a delayed growth with glucose at low and optimal salinities, could not grow at high salinity, and was able to use ectoines as carbon sources at low salinity. CHR95 was affected in the transport and/or metabolism of glucose, and showed a deregulated ectoine uptake at any salinity, but it was not affected in ectoine metabolism. Transposon insertion in CHR95 caused deletion of three genes, Csal0865-Csal0867: acs, encoding an acetyl-CoA synthase, mntR, encoding a transcriptional regulator of the DtxR/MntR family, and eupR, encoding a putative two-component response regulator with a LuxR_C-like DNA-binding helix-turn-helix domain. A single mntR mutant was sensitive to manganese, suggesting that mntR encodes a manganese-dependent transcriptional regulator. Deletion of eupR led to salt-sensitivity and enabled the mutant strain to use ectoines as carbon source at low salinity. Domain analysis included EupR as a member of the NarL/FixJ family of two component response regulators. Finally, the protein encoded by Csal869, located three genes downstream of eupR was suggested to be the cognate histidine kinase of EupR. This protein was predicted to be a hybrid histidine kinase with one transmembrane and one cytoplasmic sensor domain. CONCLUSIONS: This work represents the first example of the involvement of a two-component response regulator in the osmoadaptation of a true halophilic bacterium. Our results pave the way to the elucidation of the signal transduction pathway involved in the control of ectoine transport in C. salexigens.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Proteínas Bacterianas/metabolismo , Chromohalobacter/genética , Chromohalobacter/fisiología , Regulación Bacteriana de la Expresión Génica , Salinidad , Proteínas Bacterianas/genética , Transporte Biológico , Carbono/metabolismo , Chromohalobacter/crecimiento & desarrollo , Elementos Transponibles de ADN , ADN Bacteriano/genética , Mutación del Sistema de Lectura , Genes Bacterianos , Glucosa/metabolismo , Moduladores del Transporte de Membrana , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis Insercional , Concentración Osmolar , Presión Osmótica , Regiones Promotoras Genéticas , Transducción de Señal , Cloruro de Sodio/metabolismo
6.
Biotechnol Adv ; 28(6): 782-801, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20600783

RESUMEN

Microorganisms produce and accumulate compatible solutes aiming at protecting themselves from environmental stresses. Among them, the wide spread in nature ectoines are receiving increasing attention by the scientific community because of their multiple applications. In fact, increasing commercial demand has led to a multiplication of efforts in order to improve processes for their production. In this review, the importance of current and potential applications of ectoines as protecting agents for macromolecules, cells and tissues, together with their potential as therapeutic agents for certain diseases are analyzed and current theories for the understanding of the molecular basis of their biological activity are discussed. The genetic, biochemical and environmental determinants of ectoines biosynthesis by natural and engineered producers are described. The major limitations of current bioprocesses used for ectoines production are discussed, with emphasis on the different microorganisms, environments, molecular engineering and fermentation strategies used to optimize the production and recovery of ectoines. The combined application of both bioprocess and metabolic engineering strategies, allowing a deeper understanding of the main factors controlling the production process is also stated. Finally, this review aims to summarize and update the state of the art in ectoines uses and applications and industrial scale production using bacteria, emphasizing the importance of reactor design and operation strategies, together with the metabolic engineering aspects and the need for feedback between wet and in silico work to optimize bioproduction.


Asunto(s)
Aminoácidos Diaminos/biosíntesis , Biotecnología , Células/metabolismo , Citoprotección , Estrés Fisiológico , Aminoácidos Diaminos/química , Animales , Reactores Biológicos , Humanos
7.
BMC Microbiol ; 10: 192, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20633304

RESUMEN

BACKGROUND: Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T. RESULTS: The most NaCl-tolerant strain was A. tumefaciens 10c2, followed (in decreasing order) by R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3, R. etli 12a3 and R. gallicum bv. phaseoli 8a3. 13C- and 1H-NMR analyses showed that all Rhizobium strains synthesized trehalose whereas A. tumefaciens 10c2 synthesized mannosucrose. Glutamate synthesis was also observed in R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3 and A. tumefaciens 10c2. When added as a carbon source, mannitol was also accumulated by all strains. Accumulation of trehalose in R. tropici CIAT 899 and of mannosucrose in A. tumefaciens 10c2 was osmoregulated, suggesting their involvement in osmotolerance. The phylogenetic analysis of the otsA gene, encoding the trehalose-6-phosphate synthase, suggested the existence of lateral transfer events. In vivo 13C labeling experiments together with genomic analysis led us to propose the uptake and conversion pathways of different carbon sources into trehalose. Collaterally, the beta-1,2-cyclic glucan from R. tropici CIAT 899 was co-extracted with the cytoplasmic compatible solutes and its chemical structure was determined. CONCLUSIONS: The soil bacteria analyzed in this work accumulated mainly disaccharides in response to NaCl stress. We could not find a direct correlation between the trehalose content of the rhizobial strains and their osmotolerance, suggesting that additional osmoadaptive mechanism should be operating in the most NaCl-tolerant strain R. tropici CIAT 899.


Asunto(s)
Compuestos Orgánicos/metabolismo , Phaseolus/microbiología , Rhizobium/aislamiento & purificación , Rhizobium/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Datos de Secuencia Molecular , Filogenia , Rhizobium/clasificación , Rhizobium/genética , Cloruro de Sodio/metabolismo , Túnez
8.
Saline Syst ; 4: 14, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18793408

RESUMEN

Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. Osmoprotection is achieved by the accumulation of compatible solutes either by transport (betaine, choline) or synthesis (mainly ectoine and hydroxyectoine). Ectoines can play additional roles as nutrients and, in the case of hydroxyectoine, in thermotolerance. A supplementary solute, trehalose, not present in cells grown at 37 degrees C, is accumulated at higher temperatures, suggesting its involvement in the response to heat stress. Trehalose is also accumulated at 37 degrees C in ectoine-deficient mutants, indicating that ectoines suppress trehalose synthesis in the wild-type strain. The genes for ectoine (ectABC) and hydroxyectoine (ectD, ectE) production are arranged in three different clusters within the C. salexigens chromosome. In order to cope with changing environment, C. salexigens regulates its cytoplasmic pool of ectoines by a number of mechanisms that we have started to elucidate. This is a highly complex process because (i) hydroxyectoine can be synthesized by other enzymes different to EctD (ii) ectoines can be catabolized to serve as nutrients, (iii) the involvement of several transcriptional regulators (sigmaS, sigma32, Fur, EctR) and hence different signal transduction pathways, and (iv) the existence of post-trancriptional control mechanisms. In this review we summarize our present knowledge on the physiology and genetics of the processes allowing C. salexigens to cope with osmotic stress and high temperature, with emphasis on the transcriptional regulation.

9.
J Bacteriol ; 188(11): 3774-84, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16707670

RESUMEN

The halophilic bacterium Chromohalobacter salexigens synthesizes and accumulates compatible solutes in response to salt and temperature stress. (13)C-nuclear magnetic resonance analysis of cells grown in minimal medium at the limiting temperature of 45 degrees C revealed the presence of hydroxyectoine, ectoine, glutamate, trehalose (not present in cells grown at 37 degrees C), and the ectoine precursor, Ngamma-acetyldiaminobutyric acid. High-performance liquid chromatography analyses showed that the levels of ectoine and hydroxyectoine were maximal during the stationary phase of growth. Accumulation of hydroxyectoine was up-regulated by salinity and temperature, whereas accumulation of ectoine was up-regulated by salinity and down-regulated by temperature. The ectD gene, which is involved in the conversion of ectoine to hydroxyectoine, was isolated as part of a DNA region that also contains a gene whose product belongs to the AraC-XylS family of transcriptional activators. Orthologs of ectD were found within the sequenced genomes of members of the proteobacteria, firmicutes, and actinobacteria, and their products were grouped into the ectoine hydroxylase subfamily, which was shown to belong to the superfamily of Fe(II)- and 2-oxoglutarate-dependent oxygenases. Analysis of the ectoine and hydroxyectoine contents of an ectABC ectD mutant strain fed with 1 mM ectoine or hydroxyectoine demonstrated that ectD is required for the main ectoine hydroxylase activity in C. salexigens. Although in minimal medium at 37 degrees C the wild-type strain grew with 0.5 to 3.0 M NaCl, with optimal growth at 1.5 M NaCl, at 45 degrees C it could not cope with the lowest (0.75 M NaCl) or the highest (3.0 M NaCl) salinity, and it grew optimally at 2.5 M NaCl. The ectD mutation caused a growth defect at 45 degrees C in minimal medium with 1.5 to 2.5 M NaCl, but it did not affect growth at 37 degrees C at any salinity tested. With 2.5 M NaCl, the ectD mutant synthesized 38% (at 37 degrees C) and 15% (at 45 degrees C) of the hydroxyectoine produced by the wild-type strain. All of these data reveal that hydroxyectoine synthesis mediated by the ectD gene is thermoregulated and essential for thermoprotection of C. salexigens.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Halomonadaceae/fisiología , Adaptación Fisiológica , Secuencia de Aminoácidos , Mapeo Cromosómico , Secuencia Conservada , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Halomonadaceae/genética , Halomonadaceae/crecimiento & desarrollo , Calor , Hidroliasas/química , Hidroliasas/genética , Hidroliasas/metabolismo , Cinética , Datos de Secuencia Molecular , Plásmidos , Alineación de Secuencia , Homología de Secuencia , Cloruro de Sodio/farmacología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...