Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 159: 213826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479241

RESUMEN

Thermosensitive hydrogels based on the N-vinyl caprolactam (VCL), capable of allowing for cell adhesion and proliferation, as well as non-aggressive detachment by controlled temperature drop, were functionalized with 23 % or lower molar percentages of the cationizable hydrophobic unit 2-(diisopropylamino) ethyl methacrylate (DPAEMA), to obtain networks with dual sensitivity to temperature and pH. The swelling analysis of the systems has shown a transition pK (pKb) close to physiological values, dependent on the temperature of the medium (pKb of 6.6 and 6.9 when the temperature of the medium is above and below the transition temperature VPTT, respectively) and little dependence on the degree of functionalization of DPAEMA. In addition, at temperatures below the transition temperature (VPTT), the systems have shown large swelling variations as a function of the pH (i.e. below and above the pKb), exhibiting greater absorption capacity at pHs below pKb, where the DPAEMA units are cationized. Cytocompatibility and transplant capacity have been evaluated using the C166-GFP endothelial cell line. None of the thermosensitive hydrogels with variable DPAEMA content showed a delay with respect to the control without DPAEMA neither in terms of adhesion nor in proliferation. However, by increasing the percentage of DPAEMA functionalization -and decreasing thermosensitivity-, a correlative decrease in mitochondrial activity was obtained in the transplant, with significant differences for the hydrogels with DPAEMA molar percentage of 3 % or higher. Taking advantage of the proximity of the pKb to the physiological value, we have evaluated the cellular response and the capacity for transplantation after lowering the pH to 6.5, below pKb. A direct relationship of the DPAEMA functionalization degree on the detachment efficiency was observed, since the hydrogels with the highest molar load of DPAEMA showed higher mitochondrial metabolic activity after cell detachment.


Asunto(s)
Hidrogeles , Metacrilatos , Temperatura , Línea Celular , Metacrilatos/farmacología , Metacrilatos/química , Interacciones Hidrofóbicas e Hidrofílicas
2.
Gels ; 9(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37623055

RESUMEN

Vat photopolymerization typically prints highly crosslinked networks. Printing hydrogels, which are also networks but with a high swelling capacity in water and therefore with low crosslinking density, is a challenge for this technique. However, it may be of interest in medicine and in other areas, since it would allow for the preparation of this type of 3D-shaped material. In this work, an approach for printing hydrogels via vat photopolymerization that uses a mixture of stable and hydrolysable crosslinkers has been evaluated so that an initial highly crosslinked network can be printed, although after hydrolysis it becomes a network with low crosslinking. This approach has been studied with PEO/PEG-related formulations, that is, with a PEG-dimethacrylate as a stable crosslinker, a PEO-related derivative carrying ß-aminoesters as a degradable crosslinker, and PEG-methyl ether acrylate and hydroxyethyl acrylate as monofunctional monomers. A wide family of formulations has been studied, maintaining the weight percentage of the crosslinkers at 15%. Resins have been studied in terms of viscosity, and the printing process has been evaluated through the generation of Jacobs working curves. It has been shown that this approach allows for the printing of pieces of different shapes and sizes via vat photopolymerization, and that these pieces can re-ajust their water content in a tailored fashion through treatments in different media (PBS or pH 10 buffer).

3.
J Tissue Eng ; 14: 20417314231190288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588339

RESUMEN

Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.

4.
Pharmaceutics ; 15(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242702

RESUMEN

MicroRNAs (miRNAs) are endogenous, short RNA oligonucleotides that regulate the expression of hundreds of proteins to control cells' function in physiological and pathological conditions. miRNA therapeutics are highly specific, reducing the toxicity associated with off-target effects, and require low doses to achieve therapeutic effects. Despite their potential, applying miRNA-based therapies is limited by difficulties in delivery due to their poor stability, fast clearance, poor efficiency, and off-target effects. To overcome these challenges, polymeric vehicles have attracted a lot of attention due to their ease of production with low costs, large payload, safety profiles, and minimal induction of the immune response. Poly(N-ethyl pyrrolidine methacrylamide) (EPA) copolymers have shown optimal DNA transfection efficiencies in fibroblasts. The present study aims to evaluate the potential of EPA polymers as miRNA carriers for neural cell lines and primary neuron cultures when they are copolymerized with different compounds. To achieve this aim, we synthesized and characterized different copolymers and evaluated their miRNA condensation ability, size, charge, cytotoxicity, cell binding and internalization ability, and endosomal escape capacity. Finally, we evaluated their miRNA transfection capability and efficacy in Neuro-2a cells and rat primary hippocampal neurons. The results indicate that EPA and its copolymers, incorporating ß-cyclodextrins with or without polyethylene glycol acrylate derivatives, can be promising vehicles for miRNA administration to neural cells when all experiments on Neuro-2a cells and primary hippocampal neurons are considered together.

5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769053

RESUMEN

By employing a variation of the polyamidation method using in situ silylated diamines and acid chlorides, it was possible to obtain a rod-type polyamide: poly(p-phenylene terephthalamide) (PPTA, a polymer used in the high-value-added material Kevlar), with a molecular weight much higher than that obtained with the classical and industrial polyamidation method. The optimization of the method has consisted of using, together with the silylating agent, a mixture of pyridine and a high-pKa tertiary amine. The research was complemented by a combination of nuclear magnetic resonance and molecular simulation studies, which determined that the improvements in molecular weight derive mainly from the formation of silylamide groups in the growing polymer.


Asunto(s)
Nylons , Polímeros , Peso Molecular , Espectroscopía de Resonancia Magnética , Diaminas
6.
Biomater Adv ; 144: 213210, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36473351

RESUMEN

Pseudo interpenetrating vinyl-caprolactam (VCL) based thermosensitive tubular hydrogels with a volume phase transition temperature, VPTT, around 35 °C, have been prepared by combining two different crosslinkers, a di-methacrylate (C1) and a di-vinyl urea (C2). The molar ratio between the two crosslinkers (for a global crosslinker molar percentage of 1.9) has shown to play a key role on the properties of the hydrogel. Increasing the amount of di-vinyl urea, leads to transparent but rather fragile materials and to a lower extent of thermosensitivity, that is, to a lower variation in the hydrogel swelling upon temperature change. However, tubes prepared with a selected crosslinker molar ratio C1/C2 of 65/35 provided a compromise between transparency, thermosensitivity and maneuverability and were, thus, evaluated as supports for cell culture using premyoblastic cells. These hydrogels, used as supports, allow for surface adhesion and cell proliferation until confluence, and eventually an efficient monolayer detachment (and transplant to a 3D-printed polylactic acid (PLA) support) through a controlled drop in temperature. As a result, this method permits to obtain tubular tissue constructs with potential applications in tissue engineering such as in the elaboration of vascular grafts.


Asunto(s)
Técnicas de Cultivo de Célula , Hidrogeles , Técnicas de Cultivo de Célula/métodos , Ingeniería de Tejidos/métodos , Células Epiteliales , Temperatura
7.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457113

RESUMEN

Fibrin hydrogels are one of the most popular scaffolds used in tissue engineering due to their excellent biological properties. Special attention should be paid to the use of human plasma-derived fibrin hydrogels as a 3D scaffold in the production of autologous skin grafts, skeletal muscle regeneration and bone tissue repair. However, mechanical weakness and rapid degradation, which causes plasma-derived fibrin matrices to shrink significantly, prompted us to improve their stability. In our study, plasma-derived fibrin was chemically bonded to oxidized alginate (alginate di-aldehyde, ADA) at 10%, 20%, 50% and 80% oxidation, by Schiff base formation, to produce natural hydrogels for tissue engineering applications. First, gelling time studies showed that the degree of ADA oxidation inhibits fibrin polymerization, which we associate with fiber increment and decreased fiber density; moreover, the storage modulus increased when increasing the final volume of CaCl2 (1% w/v) from 80 µL to 200 µL per milliliter of hydrogel. The contraction was similar in matrices with and without human primary fibroblasts (hFBs). In addition, proliferation studies with encapsulated hFBs showed an increment in cell viability in hydrogels with ADA at 10% oxidation at days 1 and 3 with 80 µL of CaCl2; by increasing this compound (CaCl2), the proliferation does not significantly increase until day 7. In the presence of 10% alginate oxidation, the proliferation results are similar to the control, in contrast to the sample with 20% oxidation whose proliferation decreases. Finally, the viability studies showed that the hFB morphology was maintained regardless of the degree of oxidation used; however, the quantity of CaCl2 influences the spread of the hFBs.


Asunto(s)
Aldehídos , Alginatos , Hidrogeles , Aldehídos/química , Alginatos/química , Cloruro de Calcio/farmacología , Fibrina , Humanos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
8.
Polymers (Basel) ; 12(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212976

RESUMEN

Non-viral vectors are a safety tool for gene therapy to deliver therapeutic genes. Among the different non-viral vectors, polyvinylpyrrolidone (PVP), a well-known hydrosoluble, neutral, and non-toxic polymer, satisfies the requirements and becomes a suitable candidate for gene delivery. In this study, we describe the preparation of polyvinylpyrrolidones decorated with pyrrolidine, piperidine, and piperazine groups, and evaluate them in vitro as non-viral gene carriers. The properties of these new systems are compared with those of hyperbranched polyethyleneimine (PEI) used as a positive control. Their ability to complex DNA at different N/P molar ratios, from 1:1 up to 10:1, was studied through agarose gel electrophoresis and dynamic light scattering. The resulting complexes (polyplexes) were characterized and evaluated in vitro with murine fibroblast (Swiss 3T3) as non-viral gene carriers, using luciferase as the reporter gene and a calcein cytocompatibility assay. All the copolymers condensed DNA to a particle average size between 100-400 nm when used at N/P ratios of 4:1 or higher. The copolymers with piperidine groups showed higher transfection efficiency than the pyrrolidine and piperazine modified copolymers, and even higher than the positive control of PEI at N/P ratios of 4:1 or higher. All the synthesized polyplexes from an aminated PVP displayed a general tendency of high cytocompatibility (75-95%) in comparison with the positive control PEI (55%).

9.
Nanomaterials (Basel) ; 10(6)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486468

RESUMEN

The fabrication of porous materials for tissue engineering applications in a straightforward manner is still a current challenge. Herein, by combining the advantages of two conventional methodologies with additive manufacturing, well-defined objects with internal and external porosity were produced. First of all, multi-material fused deposition modeling (FDM) allowed us to prepare structures combining poly (ε-caprolactone) (PCL) and poly (lactic acid) (PLA), thus enabling to finely tune the final mechanical properties of the printed part with modulus and strain at break varying from values observed for pure PCL (modulus 200 MPa, strain at break 1700%) and PLA (modulus 1.2 GPa and strain at break 5-7%). More interestingly, supercritical CO2 (SCCO2) as well as the breath figures mechanism (BFs) were additionally employed to produce internal (pore diameters 80-300 µm) and external pores (with sizes ranging between 2 and 12 µm) exclusively in those areas where PCL is present. This strategy will offer unique possibilities to fabricate intricate structures combining the advantages of additive manufacturing (AM) in terms of flexibility and versatility and those provided by the SCCO2 and BFs to finely tune the formation of porous structures.

10.
ACS Appl Bio Mater ; 3(4): 1955-1967, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35025318

RESUMEN

Inspired by the ability of enzymes to use the surrounding hydrophobic and/or polarizable groups to modulate the pKa of a given amino acid, we designed a series of soluble polymers able to decrease the basicity of pyrrolidine (from 11.2 to 8.6 pKa units), which clearly increases its aminocatalytic activity at physiological pH in C═N bond formation reactions via ion iminium activation. Other parameters such as charge density, hydrophobic/hydrophilic balance, and aggregation state have been studied as important factors in the catalytic activity of the polymers for a given substrate. To demonstrate the utility of our approach, an optimal pyrrolidine-based catalytic polymer has been used for the formation of C-N bonds between hydrazides and free sugars as the model system for the preparation of glycoconjugates.

11.
ACS Appl Bio Mater ; 2(2): 654-664, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35016271

RESUMEN

We report a straightforward procedure to simultaneously functionalize hydrophobic PC supports with vinylpyrrolidone (VP)-based hydrogels with both variable ionic load as well as surface topography, forming wrinkles. The strategy involves three consecutive steps: first, a contact of the polymeric support (PC) with a photopolymerizable solution comprising vinylic monomers is established. Second, UV-light exposure curing of the solution and finally, the third step involes the swelling of the hydrogel network that finally provokes its surface detachment. Interestingly, a wrinkled hybrid PC/hydrogel interface remains after this detachment. Several experimental parameters permitted us to finely control the wrinkle characteristics such as amplitude and period. The experimental parameters that can be varied, herein we will focus on the variation of the elapsed time (i.e., time of contact between the support and the photosensitive monomer mixture, or the solvent (type and amount) included in the monomer mixture. Equally, the nature of the additional ionic methacrylate monomers (M) employed plays a key role on the final topography. According to confocal raman microscopy results, we evidenced that a monomer diffusion into the PC substrate before the UV irradiation step modifies the interfacial (hydrogel/substrate) chemical composition and leads upon UV irradiation to the formation of a thin hydrogel surface layer. The surface chemical composition and structural characteristics were demonstrated to significantly change the surface interaction with different cell lines, affecting cell adhesion, proliferation, or transplantation.

12.
ACS Omega ; 3(10): 12593-12599, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30411012

RESUMEN

Supercritical fluids technology is a clean methodology to foam polymeric materials. However, this technique provides only the formation of inner porosity, whereas the so-called skin layer is commonly observed at the polymer surface. This article describes a new method for the preparation of outer and inner porous poly(ε-caprolactone) (PCL) scaffolds by combination of supercritical CO2 (SCCO2) foaming and the breath figures technique. In the first step, experiments with a SCCO2 reactor were performed at 35-45 °C, 100-250 bar, and 1-20 min depressurization time. The effect of these parameters in the formation of inner porosity was investigated for an adequate optimization. In a late stage, to provide also surface porosity to the polymeric samples and remove the skin layer, the breath figures technique was employed. The evaluation of porosity was determined by scanning electronic microscopy, mercury porosimetry, and micro X-ray computerized tomography scanning processing the images obtained with the ImageJ software. The results of this study using these two complementary techniques showed the existence of interconnectivity between inner and outer porosity of the samples. Furthermore, thermal transitions and crystallinity of the PCL samples have been analyzed by differential scanning calorimetry. Finally, a preliminary biological evaluation of the resulting scaffolds with mouse endothelial cells (C166-GFP) was performed to assess their biocompatibility and cellular viability.

13.
Nanoscale ; 9(30): 10590-10595, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28726951

RESUMEN

Efficient exfoliation of graphene and related materials (GRM) and fast and inexpensive integration/assembly are crucial to fulfil their full potential. A high degree of exfoliation in organic media can be achieved with high boiling point liquids that usually leave residues after drying, which is a handicap for many applications. Here, the effective exfoliation and dispersion of GRM in a vinyl monomer, which is subsequently converted to a functional polymer by photopolymerization, is reported. Nanocomposite membranes and three-dimensional objects are produced by the photo-curing process and stereolithography 3D printing, respectively.

14.
Eur J Pharm Biopharm ; 117: 68-76, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28385616

RESUMEN

The main parameters that contribute to non-viral gene delivery are chemical structure and charge distribution. Indeed, saccharide units have been reported to have specific interactions with proteins located in the outer leaflet of the plasma cell membrane that facilitate the cellular internalization of plasmid-DNA vector complexes. In this work, glycopolymers based on statistical copolymers were synthesized through radical copolymerization of a cationic unit, N-ethyl pyrrolidine methacrylamide (EPA), with two styrenic monomers derived from the hydroxylated and permethylated forms of α-glucose. These copolymers were evaluated as possible non-viral gene carriers, and their ability to complex DNA was evaluated. The transfection efficiency and cytocompatibility of the polyplexes, in both fibroblastic and tumoral murine cell lines, was evaluated. Systems derived from α-glucose (GLCSt), over a monomer concentration range of 5-70mol%, exhibited high toxicity and low transfection efficiency, and were not able to significantly improve on results obtained from positive poly-EPA (PEPA) and polyethyleneimine (PEI) controls. However, systems derived from the permethylated form of α-glucose (MGLCSt), formed stable complexes with DNA or polyplexes, which showed improved transfection efficiency and cytocompatibility in comparison to positive controls. The high transfection efficiency can be clearly attributed to their cytocompatibility, which was notably found to be different for Swiss fibroblasts and B16 melanoma cells, high for Swiss and low for B16. As such, we present permethylated MCLCSt copolymers as good candidates for the possible development of therapies against melanoma.


Asunto(s)
Heterocigoto , Polímeros/administración & dosificación , Polímeros/química , Células 3T3 , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Melanoma Experimental , Ratones , Polímeros/metabolismo
15.
Macromol Rapid Commun ; 38(6)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28160361

RESUMEN

Monoamino functionalized ethylenoxide (EO)/propylenoxide oligomers (Jeffamine) are linked chemically to poly(vinyl chloride) (PVC) using trichlorotriazine chemistry in order to prepare nonmigrating internally plasticized materials. The dependence of the plasticizer efficiency on both the number of anchoring points to the chains and the PVC/plasticizer compatibility is investigated using oligomers of different molecular weight and hydrophilic-hydrophobic balance. Hydrophilic oligomers (containing predominantly EO) of molecular weights between 2000 and 5000 g mol-1 exhibit excellent plasticizer efficiency, nearly identical to di-2-ethylhexylphthalate (DOP) in conventional PVC/DOP mixtures and may therefore be used as nonmigrating equivalents for DOP.


Asunto(s)
Dietilhexil Ftalato/química , Plastificantes/química , Polietilenos/química , Polipropilenos/química , Cloruro de Polivinilo/química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular
16.
Langmuir ; 33(7): 1614-1622, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28124914

RESUMEN

Facile procedures capable of simultaneously conferring hydrophilicity and tailored topography to surfaces of hydrophobic supports, such as polycarbonate (PC), are very attractive but rare. In this work, we describe a simple methodology to wrinkle PC surfaces after a process of (a) contacting with a photopolymerizable vinylic solution, (b) UV curing of such solutions, and (c) detachment of the formed polymer network, upon swelling in ethanol. The influence of different parameters such as contact lag time between the PC surface and the polymerizable solution, the monomer concentration and type of solvents, as well as the cross-linking degree on the formation of wrinkles, has been studied. The dimensions of the wrinkles can be tailored to some extent by altering the different parameters. Surface chemistry has been analyzed by contact angle measurements and by confocal Raman microscopy. The results are consistent with a chemical alteration of the surface and the formation of an outer hydrogel layer, which is interpenetrated into the PC structure. A mechanism of monomer diffusion and PC swelling that produces surface instabilities and wrinkling is proposed.

17.
Macromol Rapid Commun ; 37(7): 575-83, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26833583

RESUMEN

The incorporation of cyclodextrins (CDs) to nonviral cationic polymer vectors is very attractive due to recent studies that report a clear improvement of their cytocompatibility and transfection efficiency. However, a systematic study on the influence of the CD derivatization is still lacking. In this work, the relevance of ß-CD permethylation has been addressed by preparing and evaluating two series of copolymers of the cationic N-ethyl pyrrolidine methacrylamide (EPA) and styrenic units bearing pendant hydroxylated and permethylated ß-CDs (HCDSt and MeCDSt, respectively). For both cell lines, CDs permethylation shows a strong influence on plasmid DNA complexation, "in vitro" cytocompatibility and transfection efficiency of the resulting copolymers over two murine cell lines. While the incorporation of the hydroxylated CD moiety increased the cytotoxicity of the copolymers in comparison with their homopolycationic counterpart, the permethylated copolymers have shown full cytocompatibility as well as superior transfection efficiency than the controls. This behavior has been related to the different chemical nature of both units and tentatively to a different distribution of units along the polymeric chains. Cellular internalization analysis with fluorescent copo-lymers supports this behavior.


Asunto(s)
Plásmidos/metabolismo , Polímeros/química , Transfección , beta-Ciclodextrinas/química , Células 3T3 , Acrilamidas/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Cationes/química , Glicósidos/química , Metilación , Ratones , Microscopía Fluorescente , Plásmidos/genética , Polímeros/síntesis química , Polímeros/metabolismo , Espectrofotometría Ultravioleta
18.
Polymers (Basel) ; 8(4)2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-30979244

RESUMEN

Several synthetic strategies based on the use of substituted aromatic and hetero-aromatic thiols for the covalent binding of modifier compounds to PVC are described. A variety of aliphatic alcohols and amines are linked to the aromatic or heteroaromatic rings via highly active functionalities as the isocyanate, acidchloride, or chlorosulfonyl group, and the three chlorine atoms of trichlorotriazine. The first three pathways lead to protected aromatic disulfides obtaining the substituted aromatic thiols by reduction as a final step of an unprecedented synthetic route. The second approach, in a novel, extremely efficient, and scalable process, uses the particular selectivity of trichlorotriazine to connect aliphatic amines, alcohols, and thiols to the ring and creates the thiol via nucleophilic substitution of a heteroaromatic halogen by thiourea and subsequent hydrolysis. Most of the modifier compounds were linked to the polymer chains with high degrees of anchorage. The presented approaches are highly versatile as different activations of aromatic and heteroaromatic rings are used. Therefore, many types of tailored functional nucleophiles may be anchored to PVC providing non-migrating materials with a broad range of applications and properties.

19.
Eur J Pharm Biopharm ; 93: 303-10, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25937440

RESUMEN

Statistical copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and the dendronic methacrylic monomer 2-(3-(Bis(2-(diethylamino)ethyl)amino)propanamido)ethyl methacrylate (TEDETAMA, derived from N,N,N',N'-tetraethyldiethylenetriamine, TEDETA), were synthesized through radical copolymerization and evaluated in vitro as non-viral gene carriers. Three copolymers with nominal molar percentages of HPMA of 25%, 50% and 75% were prepared and studied comparatively to the positive controls poly-TEDETAMA and hyperbranched polyethyleneimine (PEI, 25kDa). Their ability to complex DNA at different N/P molar ratios, from 1/1 up to 8/1, was determined through agarose gel electrophoresis and Dynamic Light Scattering. The resulting complexes (polyplexes) were characterized and evaluated in vitro as possible non-viral gene carriers for Swiss-3T3 fibroblasts, using luciferase as reporter gene and a calcein cytocompatibility assay. All the copolymers, except the one with highest HPMA proportion (75 molar %) at the lowest N/P ratio, condensed DNA to a particle size between 100 and 300 nm. The copolymers with 25 and 50 molar % of HPMA displayed higher transfection efficiency and cytocompatibility than the positive controls poly-TEDETAMA and PEI. A higher proportion of HPMA (75 molar %) led to copolymers that displayed very low transfection efficiency, despite their full cytocompatibility even at the highest N/P ratio. These results indicate that the statistical combination of TEDETAMA and HPMA and its fine compositional tuning in the copolymers may fulfill the fine balance of transfection efficiency and cytocompatibility in a superior way to the control poly-TEDETAMA and PEI.


Asunto(s)
Acrilamidas/síntesis química , ADN/biosíntesis , Dendrímeros/síntesis química , Fibroblastos/metabolismo , Modelos Estadísticos , Polietileneimina/síntesis química , Transfección/métodos , Acrilamidas/toxicidad , Animales , ADN/química , Dendrímeros/toxicidad , Electroforesis en Gel de Agar , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica , Genes Reporteros , Luz , Luciferasas/biosíntesis , Luciferasas/genética , Ratones , Estructura Molecular , Conformación de Ácido Nucleico , Tamaño de la Partícula , Polietileneimina/análogos & derivados , Polietileneimina/toxicidad , Dispersión de Radiación , Células 3T3 Swiss
20.
Electrophoresis ; 36(14): 1564-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25820626

RESUMEN

In this work, the suitability of a new polymer family has been investigated as capillary coatings for the analysis of peptides and basic proteins by CE. This polymer family has been designed to minimize or completely prevent protein-capillary wall interactions and to modify the EOF. These coating materials are linear polymeric chains bearing as side cationizable moiety a dentronic triamine derived from N,N,N',N'-tetraethyldiethylenetriamine (TEDETA), which is linked to the backbone through a spacer (unit labeled as TEDETAMA). Four different polymers have been prepared and evaluated: a homopolymer which comprised only of those cationizable repetitive units of TEDETAMA, and three copolymers that randomly incorporate TEDETAMA together with neutral hydrosoluble units of N-(2-hydroxypropyl) methacrylamide (HPMA) at different molar percentages (25:75, 50:50 and 75:25). It has been demonstrated that the composition of the copolymers influences the EOF and therefore the separation of the investigated biopolymers. Among the novel polymers studied, poly-(TEDETAMA-co-HPMA) 50:50 copolymer was successfully applied as coating material of the inner capillary surface in CE-UV and CE-MS, providing EOF reversing together with fast and efficient baseline separation of peptides and basic proteins. Finally, the feasibility of the polymer-coated capillary was shown through the analysis of lysozyme in a cheese sample.


Asunto(s)
Dendrímeros/química , Electroforesis Capilar/métodos , Péptidos/aislamiento & purificación , Poliaminas/química , Proteínas/aislamiento & purificación , Animales , Bovinos , Caballos , Espectrometría de Masas/métodos , Péptidos/análisis , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...