Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Rep ; 43(5): 114192, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703367

RESUMEN

The preoptic area of the hypothalamus (POA) is essential for sleep regulation. However, the cellular makeup of the POA is heterogeneous, and the molecular identities of the sleep-promoting cells remain elusive. To address this question, this study compares mice during recovery sleep following sleep deprivation to mice allowed extended sleep. Single-nucleus RNA sequencing (single-nucleus RNA-seq) identifies one galanin inhibitory neuronal subtype that shows upregulation of rapid and delayed activity-regulated genes during recovery sleep. This cell type expresses higher levels of growth hormone receptor and lower levels of estrogen receptor compared to other galanin subtypes. single-nucleus RNA-seq also reveals cell-type-specific upregulation of purinergic receptor (P2ry14) and serotonin receptor (Htr2a) during recovery sleep in this neuronal subtype, suggesting possible mechanisms for sleep regulation. Studies with RNAscope validate the single-nucleus RNA-seq findings. Thus, the combined use of single-nucleus RNA-seq and activity-regulated genes identifies a neuronal subtype functionally involved in sleep regulation.

2.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746090

RESUMEN

The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive. Given the complexity of pain as a sensory and emotional experience, and the richness of ethological pain-related behaviors, we developed a standardized, deep-learning platform for deconstructing the behavior dynamics associated with the affective component of pain in mice-LUPE (Light aUtomated Pain Evaluator). LUPE removes human bias in behavior quantification and accelerated analysis from weeks to hours, which we leveraged to discover that morphine altered attentional and motivational pain behaviors akin to affective analgesia in humans. Through activity-dependent genetics and single-nuclei RNA sequencing, we identified specific ensembles of nociceptive cingulate neuron-types expressing mu-opioid receptors. Tuning receptor expression in these cells bidirectionally modulated morphine analgesia. Moreover, we employed a synthetic opioid receptor promoter-driven approach for cell-type specific optical and chemical genetic viral therapies to mimic morphine's pain-relieving effects in the cingulate, without reinforcement. This approach offers a novel strategy for precision pain management by targeting a key nociceptive cortical circuit with on-demand, non-addictive, and effective analgesia.

3.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405972

RESUMEN

The basolateral amygdala (BLA) is essential for assigning positive or negative valence to sensory stimuli. Noxious stimuli that cause pain are encoded by an ensemble of nociceptive BLA projection neurons (BLAnoci ensemble). However, the role of the BLAnoci ensemble in mediating behavior changes and the molecular signatures and downstream targets distinguishing this ensemble remain poorly understood. Here, we show that the same BLAnoci ensemble neurons are required for both acute and chronic neuropathic pain behavior. Using single nucleus RNA-sequencing, we characterized the effect of acute and chronic pain on the BLA and identified enrichment for genes with known functions in axonal and synaptic organization and pain perception. We thus examined the brain-wide targets of the BLAnoci ensemble and uncovered a previously undescribed nociceptive hotspot of the nucleus accumbens shell (NAcSh) that mirrors the stability and specificity of the BLAnoci ensemble and is recruited in chronic pain. Notably, BLAnoci ensemble axons transmit acute and neuropathic nociceptive information to the NAcSh, highlighting this nociceptive amygdala-striatal circuit as a unique pathway for affective-motivational responses across pain states.

4.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873229

RESUMEN

The ability to encode and retrieve meal-related information is critical to efficiently guide energy acquisition and consumption, yet the underlying neural processes remain elusive. Here we reveal that ventral hippocampus (HPCv) neuronal activity dynamically elevates during meal consumption and this response is highly predictive of subsequent performance in a foraging-related spatial memory task. Targeted recombination-mediated ablation of HPCv meal-responsive neurons impairs foraging-related spatial memory without influencing food motivation, anxiety-like behavior, or escape-mediated spatial memory. These HPCv meal-responsive neurons project to the lateral hypothalamic area (LHA) and single-nucleus RNA sequencing and in situ hybridization analyses indicate they are enriched in serotonin 2a receptors (5HT2aR). Either chemogenetic silencing of HPCv-to-LHA projections or intra-HPCv 5HT2aR antagonist yielded foraging-related spatial memory deficits, as well as alterations in caloric intake and the temporal sequence of spontaneous meal consumption. Collective results identify a population of HPCv neurons that dynamically respond to eating to encode meal-related memories.

5.
Neuropsychopharmacology ; 48(13): 1878-1888, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37355732

RESUMEN

The high rates of relapse associated with current medications used to treat opioid use disorder (OUD) necessitate research that expands our understanding of the neural mechanisms regulating opioid taking to identify molecular substrates that could be targeted by novel pharmacotherapies to treat OUD. Recent studies show that activation of calcitonin receptors (CTRs) is sufficient to reduce the rewarding effects of addictive drugs in rodents. However, the role of central CTR signaling in opioid-mediated behaviors has not been studied. Here, we used single nuclei RNA sequencing (snRNA-seq), fluorescent in situ hybridization (FISH), and immunohistochemistry (IHC) to characterize cell type-specific patterns of CTR expression in the nucleus accumbens (NAc), a brain region that plays a critical role in voluntary drug taking. Using these approaches, we identified CTRs expressed on D1R- and D2R-expressing medium spiny neurons (MSNs) in the medial shell subregion of the NAc. Interestingly, Calcr transcripts were expressed at higher levels in D2R- versus D1R-expressing MSNs. Cre-dependent viral-mediated miRNA knockdown of CTRs in transgenic male rats was then used to determine the functional significance of endogenous CTR signaling in opioid taking. We discovered that reduced CTR expression specifically in D1R-expressing MSNs potentiated/augmented opioid self-administration. In contrast, reduced CTR expression specifically in D2R-expressing MSNs attenuated opioid self-administration. These findings highlight a novel cell type-specific mechanism by which CTR signaling in the ventral striatum bidirectionally modulates voluntary opioid taking and support future studies aimed at targeting central CTR-expressing circuits to treat OUD.


Asunto(s)
Analgésicos Opioides , Núcleo Accumbens , Ratas , Animales , Masculino , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Receptores de Calcitonina/genética , Receptores de Calcitonina/metabolismo , Neuronas Espinosas Medianas , Hibridación Fluorescente in Situ , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo
6.
Nat Commun ; 14(1): 2632, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149684

RESUMEN

Cancer metastasis to the brain is a significant clinical problem. Metastasis is the consequence of favorable interactions between invaded cancer cells and the microenvironment. Here, we demonstrate that cancer-activated astrocytes create a sustained low-level activated type I interferon (IFN) microenvironment in brain metastatic lesions. We further confirm that the IFN response in astrocytes facilitates brain metastasis. Mechanistically, IFN signaling in astrocytes activates C-C Motif Chemokine Ligand 2 (CCL2) production, which further increases the recruitment of monocytic myeloid cells. The correlation between CCL2 and monocytic myeloid cells is confirmed in clinical brain metastasis samples. Lastly, genetically or pharmacologically inhibiting C-C Motif Chemokine Receptor 2 (CCR2) reduces brain metastases. Our study clarifies a pro-metastatic effect of type I IFN in the brain even though IFN response has been considered to have anti-tumor effects. Moreover, this work expands our understandings on the interactions between cancer-activated astrocytes and immune cells in brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Interferón Tipo I , Humanos , Interferón Tipo I/metabolismo , Astrocitos/metabolismo , Quimiocina CCL2/metabolismo , Células Mieloides/metabolismo , Neoplasias Encefálicas/patología , Receptores CCR2/metabolismo , Microambiente Tumoral
7.
Nutrients ; 15(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242151

RESUMEN

The g-protein coupled receptor GPR-160, recently identified as a putative receptor for the cocaine and amphetamine-regulated transcript (CART) peptide, shows abundant expression in the energy-balance control nuclei, including the dorsal vagal complex (DVC). However, its physiological role in the control of food intake has yet to be fully explored. Here, we performed a virally mediated, targeted knockdown (KD) of Gpr160 in the DVC of male rats to evaluate its physiological role in control of feeding. Our results indicate that DVC Gpr160 KD affects meal microstructure. Specifically, DVC Gpr160 KD animals consumed more frequent, but shorter meals during the dark phase and showed decreased caloric intake and duration of meals during the light phase. Cumulatively, however, these bidirectional effects on feeding resulted in no difference in body weight gain. We next tested the role of DVC GPR-160 in mediating the anorexigenic effects of exogenous CART. Our results show that DVC Gpr160 KD partially attenuates CART's anorexigenic effects. To further characterize Gpr160+ cells in the DVC, we utilized single-nucleus RNA sequencing data to uncover abundant GPR-160 expression in DVC microglia and only minimal expression in neurons. Altogether, our results suggest that DVC CART signaling may be mediated by Gpr160+ microglia, which in turn may be modulating DVC neuronal activity to control food intake.


Asunto(s)
Núcleo Solitario , Nervio Vago , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Nervio Vago/metabolismo , Neuronas
8.
Mol Metab ; 73: 101743, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37245848

RESUMEN

OBJECTIVE: Nausea and vomiting remain life-threatening obstacles to successful treatment of chronic diseases, despite a cadre of available antiemetic medications. Our inability to effectively control chemotherapy-induced nausea and vomiting (CINV) highlights the need to anatomically, molecularly, and functionally characterize novel neural substrates that block CINV. METHODS: Behavioral pharmacology assays of nausea and emesis in 3 different mammalian species were combined with histological and unbiased transcriptomic analyses to investigate the beneficial effects of glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism on CINV. RESULTS: Single-nuclei transcriptomics and histological approaches in rats revealed a topographical, molecularly distinct, GABA-ergic neuronal population in the dorsal vagal complex (DVC) that is modulated by chemotherapy but rescued by GIPR agonism. Activation of DVCGIPR neurons substantially decreased behaviors indicative of malaise in cisplatin-treated rats. Strikingly, GIPR agonism blocks cisplatin-induced emesis in both ferrets and shrews. CONCLUSION: Our multispecies study defines a peptidergic system that represents a novel therapeutic target for the management of CINV, and potentially other drivers of nausea/emesis.


Asunto(s)
Antineoplásicos , Cisplatino , Animales , Ratas , Cisplatino/efectos adversos , Hurones , Náusea/inducido químicamente , Náusea/tratamiento farmacológico , Náusea/epidemiología , Vómitos/inducido químicamente , Vómitos/tratamiento farmacológico , Antineoplásicos/efectos adversos
9.
Genes (Basel) ; 14(3)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36981041

RESUMEN

The development of single-cell and single-nucleus transcriptome technologies is enabling the unraveling of the molecular and cellular heterogeneity of psychiatric disorders. The complexity of the brain and the relationships between different brain regions can be better understood through the classification of individual cell populations based on their molecular markers and transcriptomic features. Analysis of these unique cell types can explain their involvement in the pathology of psychiatric disorders. Recent studies in both human and animal models have emphasized the importance of transcriptome analysis of neuronal cells in psychiatric disorders but also revealed critical roles for non-neuronal cells, such as oligodendrocytes and microglia. In this review, we update current findings on the brain transcriptome and explore molecular studies addressing transcriptomic alterations identified in human and animal models in depression and stress, neurodegenerative disorders (Parkinson's and Alzheimer's disease), schizophrenia, opioid use disorder, and alcohol and psychostimulant abuse. We also comment on potential future directions in single-cell and single-nucleus studies.


Asunto(s)
Trastornos Mentales , Transcriptoma , Animales , Humanos , Transcriptoma/genética , Perfilación de la Expresión Génica , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Neuronas/metabolismo , Núcleo Solitario
10.
J Alzheimers Dis ; 90(3): 1233-1247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213995

RESUMEN

BACKGROUND: 5XFAD humanized mutant mice and Trem2 knockout (T2KO) mice are two mouse models relevant to the study of Alzheimer's disease (AD)-related pathology. OBJECTIVE: To determine hippocampal transcriptomic and polyadenylation site usage alterations caused by genetic mutations engineered in 5XFAD and T2KO mice. METHODS: Employing a publicly available single-nucleus RNA sequencing dataset, we used Seurat and Sierra analytic programs to identify differentially expressed genes (DEGs) and differential transcript usage (DTU), respectively, in hippocampal cell types from each of the two mouse models. We analyzed cell type-specific DEGs further using Ingenuity Pathway Analysis (IPA). RESULTS: We identified several DEGs in both neuronal and glial cell subtypes in comparisons of wild type (WT) versus 5XFAD and WT versus T2KO mice, including Ttr, Fth1, Pcsk1n, Malat1, Rpl37, Rtn1, Sepw1, Uba52, Mbp, Arl6ip5, Gm26917, Vwa1, and Pgrmc1. We also observed DTU in common between the two comparisons in neuronal and glial subtypes, specifically in the genes Prnp, Rbm4b, Pnisr, Opcml, Cpne7, Adgrb1, Gabarapl2, Ubb, Ndfip1, Car11, and Stmn4. IPA identified three statistically significant canonical pathways that appeared in multiple cell types and that overlapped between 5XFAD and T2KO comparisons to WT, including 'FXR/RXR Activation', 'LXR/RXR Activation', and 'Acute Phase Response Signaling'. CONCLUSION: DEG, DTU, and IPA findings, derived from two different mouse models of AD, highlight the importance of energy imbalance and inflammatory processes in specific hippocampal cell types, including subtypes of neurons and glial cells, in the development of AD-related pathology. Additional studies are needed to further characterize these findings.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/patología , Transcriptoma , Ratones Transgénicos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratones Noqueados , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Proteínas del Tejido Nervioso/genética
11.
Transl Psychiatry ; 12(1): 374, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075888

RESUMEN

Opioid exposure is known to cause transcriptomic changes in the nucleus accumbens (NAc). However, no studies to date have investigated cell type-specific transcriptomic changes associated with volitional opioid taking. Here, we use single nucleus RNA sequencing (snRNAseq) to comprehensively characterize cell type-specific alterations of the NAc transcriptome in rats self-administering morphine. One cohort of male Brown Norway rats was injected with acute morphine (10 mg/kg, i.p.) or saline. A second cohort of rats was allowed to self-administer intravenous morphine (1.0 mg/kg/infusion) for 10 consecutive days. Each morphine-experienced rat was paired with a yoked saline control rat. snRNAseq libraries were generated from NAc punches and used to identify cell type-specific gene expression changes associated with volitional morphine taking. We identified 1106 differentially expressed genes (DEGs) in the acute morphine group, compared to 2453 DEGs in the morphine self-administration group, across 27 distinct cell clusters. Importantly, we identified 1329 DEGs that were specific to morphine self-administration. DEGs were identified in novel clusters of astrocytes, oligodendrocytes, and D1R- and D2R-expressing medium spiny neurons in the NAc. Cell type-specific DEGs included Rgs9, Celf5, Oprm1, and Pde10a. Upregulation of Rgs9 and Celf5 in D2R-expressing neurons was validated by RNAscope. Approximately 85% of all oligodendrocyte DEGs, nearly all of which were associated with morphine taking, were identified in two subtypes. Bioinformatic analyses identified cell type-specific upstream regulatory mechanisms of the observed transcriptome alterations and downstream signaling pathways, including both novel and previously identified molecular pathways. These findings show that volitional morphine taking is associated with distinct cell type-specific transcriptomic changes in the rat NAc and highlight specific striatal cell populations and novel molecular substrates that could be targeted to reduce compulsive opioid taking.


Asunto(s)
Morfina , Núcleo Accumbens , Analgésicos Opioides/farmacología , Animales , Humanos , Masculino , Morfina/farmacología , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Ratas , Transcriptoma
12.
Neurosci Res ; 176: 85-89, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34757086

RESUMEN

A dataset of single-nucleus RNA sequencing (snRNAseq) data was analyzed using Seurat, Sierra, and Ingenuity Pathway Analysis (IPA) programs to assess differentially expressed genes (DEGs) and differential transcript usage (DTU) in mouse hippocampal cell types. Seurat identified DEGs between the wild type (WT) and Apoe knockout (EKO) mice. IPA identified 11 statistically significant canonical pathways in >1 cell type. Sierra identified Sipa1l1 with DTU between WT and EKO samples. Analysis of the Sipa1l1 peak region identified an alternative non-canonical polyadenylation signal and a putative cytoplasmic polyadenylation element. APOE regulation of gene transcription and co-transcriptional RNA processing may underlie Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Expresión Génica , Regulación de la Expresión Génica , Hipocampo/metabolismo , Ratones , Ratones Noqueados para ApoE
13.
Mol Metab ; 56: 101422, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942400

RESUMEN

OBJECTIVE: Growth differentiation factor 15 (GDF15) is known to play a role in feeding, nausea, and body weight, with action through the GFRAL-RET receptor complex in the area postrema (AP) and nucleus tractus solitarius (NTS). To further elucidate the underlying cell type-specific molecular mechanisms downstream of GDF15 signaling, we used a single nuclei RNA sequencing (snRNAseq) approach to profile AP and NTS cellular subtype-specific transcriptomes after systemic GDF15 treatment. METHODS: AP and NTS micropunches were used for snRNAseq from Sprague Dawley rats 6 h following GDF15 or saline injection, and Seurat was used to identify cellular subtypes and cell type-specific alterations in gene expression that were due to the direct and secondary effects of systemic GDF15 treatment. RESULTS: Using the transcriptome profile of ∼35,000 individual AP/NTS nuclei, we identified 19 transcriptomically distinct cellular subtypes, including a single population Gfral and Ret positive excitatory neurons, representing the primary site of action for GDF15. A total of ∼600 cell type-specific differential expression events were identified in neurons and glia, including the identification of transcriptome alterations specific to the direct effects of GDF15 in the Gfral-Ret positive excitatory neurons and shared transcriptome alterations across neuronal and glial cell types. Downstream analyses identified shared and cell type-specific alterations in signaling pathways and upstream regulatory mechanisms of the observed transcriptome alterations. CONCLUSIONS: These data provide a considerable advance in our understanding of AP and NTS cell type-specific molecular mechanisms associated with GDF15 signaling. The identified cellular subtype-specific regulatory mechanism and signaling pathways likely represent important targets for future pharmacotherapies.


Asunto(s)
Área Postrema , Núcleo Solitario , Animales , Área Postrema/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN , Núcleo Solitario/metabolismo
14.
Schizophr Bull Open ; 2(1): sgab031, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34901866

RESUMEN

Studies of the genetic heritability of schizophrenia and bipolar disorder examining single nucleotide polymorphisms (SNPs) and copy number variations have failed to explain a large portion of the genetic liability, resulting in substantial missing heritability. Long interspersed element 1 (L1) retrotransposons are a type of inherited polymorphic variant that may be associated with risk for schizophrenia and bipolar disorder. We performed REBELseq, a genome wide assay for L1 sequences, on DNA from male and female persons with schizophrenia and controls (n = 63 each) to identify inherited L1 insertions and validated priority insertions. L1 insertions of interest were genotyped in DNA from a replication cohort of persons with schizophrenia, bipolar disorder, and controls (n = 2268 each) to examine differences in carrier frequencies. We identified an inherited L1 insertion in ARHGAP24 and a quadallelic SNP (rs74169643) inside an L1 insertion in SNTG2 that are associated with risk for developing schizophrenia and bipolar disorder (all odds ratios ~1.2). Pathway analysis identified 15 gene ontologies that were differentially affected by L1 burden, including multiple ontologies related to glutamatergic signaling and immune function, which have been previously associated with schizophrenia. These findings provide further evidence supporting the role of inherited repetitive genetic elements in the heritability of psychiatric disorders.

15.
Am J Drug Alcohol Abuse ; 47(5): 581-589, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34407719

RESUMEN

BACKGROUND: The functional mechanism is unknown for many genetic variants associated with substance use disorder phenotypes. Rs678849, an intronic variant in the delta-opioid receptor gene (OPRD1), has been found to predict regional brain volume, addiction risk, and the efficacy of buprenorphine/naloxone in treating opioid use disorder. The variant has also been implicated as an expression quantitative trait locus (eQTL) for several genes. OBJECTIVES: The objective of this study was to identify functional differences between the two alleles of rs678849 in vitro. We hypothesized that the two alleles of rs678849 would have different effects on transcriptional activity due to differential interactions with transcription factors. METHODS: 15bp regions containing the C or T alleles of rs678849 were cloned into luciferase constructs and transfected into BE(2)C neuroblastoma cells to test the effect on transcription. Electrophoretic mobility shift assays (EMSA) using nuclear lysates from BE(2)C cell or human postmortem medial prefrontal cortex were used to identify proteins that differentially bound the two alleles. RESULTS: At 24 hours post-transfection, the C allele construct had significantly lower luciferase expression than the T allele construct and empty vector control (ANOVA p < .001). Proteomic analysis and supershift assays identified XRCC6 as a transcription factor specifically binding the C allele, whereas hnRNP D0 was found to specifically bind the T allele. CONCLUSION: These functional differences between the C and T alleles may help explain the psychiatric and neurological phenotype differences predicted by rs678849 genotype and the potential role of the variant as an eQTL.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Autoantígeno Ku/metabolismo , Variantes Farmacogenómicas , Receptores Opioides delta/genética , Factores de Transcripción/metabolismo , Alelos , Ensayo de Cambio de Movilidad Electroforética , Genotipo , Humanos , Luciferasas de Luciérnaga , Unión Proteica/genética , Sitios de Carácter Cuantitativo/genética
16.
Diabetes ; 70(11): 2545-2553, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380697

RESUMEN

Glucagon-like peptide 1 receptor (GLP-1R) agonists decrease body weight and improve glycemic control in obesity and diabetes. Patient compliance and maximal efficacy of GLP-1 therapeutics are limited by adverse side effects, including nausea and emesis. In three different species (i.e., mice, rats, and musk shrews), we show that glucose-dependent insulinotropic polypeptide receptor (GIPR) signaling blocks emesis and attenuates illness behaviors elicited by GLP-1R activation, while maintaining reduced food intake, body weight loss, and improved glucose tolerance. The area postrema and nucleus tractus solitarius (AP/NTS) of the hindbrain are required for food intake and body weight suppression by GLP-1R ligands and processing of emetic stimuli. Using single-nuclei RNA sequencing, we identified the cellular phenotypes of AP/NTS cells expressing GIPR and GLP-1R on distinct populations of inhibitory and excitatory neurons, with the greatest expression of GIPR in γ-aminobutyric acid-ergic neurons. This work suggests that combinatorial pharmaceutical targeting of GLP-1R and GIPR will increase efficacy in treating obesity and diabetes by reducing nausea and vomiting.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Náusea/inducido químicamente , Náusea/tratamiento farmacológico , Receptores de la Hormona Gastrointestinal/agonistas , Animales , Peso Corporal/efectos de los fármacos , Conducta Alimentaria , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Musarañas , Vómitos
17.
Epilepsia ; 62(6): 1329-1342, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826137

RESUMEN

OBJECTIVE: To determine if long interspersed element-1 (L1) retrotransposons convey risk for idiopathic temporal lobe epilepsy (TLE). METHODS: Surgically resected temporal cortex from individuals with TLE (N = 33) and postmortem temporal cortex from individuals with no known neurological disease (N = 33) were analyzed for L1 content by Restriction Enzyme Based Enriched L1Hs sequencing (REBELseq). Expression of three KCNIP4 splice variants was assessed by droplet digital PCR (ddPCR). Protein ANalysis THrough Evolutionary Relationships (PANTHER) was used to determine ontologies and pathways for lists of genes harboring L1 insertions. RESULTS: We identified novel L1 insertions specific to individuals with TLE, and others specific to controls. Although there were no statistically significant differences between cases and controls in the numbers of known and novel L1 insertions, PANTHER analyses of intragenic L1 insertions showed statistically significant enrichments for epilepsy-relevant gene ontologies in both cases and controls. Gene ontologies "neuron projection development" and "calcium ion transmembrane transport" were among those found only in individuals with TLE. We confirmed novel L1 insertions in several genes associated with seizures/epilepsy, including a de novo somatic L1 retrotransposition in KCNIP4 that occurred after neural crest formation in one patient. However, ddPCR results suggest this de novo L1 did not alter KCNIP4 mRNA expression. SIGNIFICANCE: Given current data from this small cohort, we conclude that L1 elements, either rare heritable germline insertions or de novo somatic retrotranspositions, may contribute only minimally to overall genetic risk for idiopathic TLE. We suggest that further studies in additional patients and additional brain regions are warranted.


Asunto(s)
Elementos Transponibles de ADN/genética , Epilepsia del Lóbulo Temporal/genética , Elementos de Nucleótido Esparcido Largo/genética , Adulto , Calcio/metabolismo , Biología Computacional , Electroencefalografía , Epilepsia del Lóbulo Temporal/epidemiología , Femenino , Humanos , Proteínas de Interacción con los Canales Kv/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuronas/patología , Valores de Referencia , Factores de Riesgo , Lóbulo Temporal/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-32229609

RESUMEN

The incidence of neonatal opioid withdrawal syndrome (NOWS) has increased substantially in the setting of the opioid epidemic, a major public health problem in the United States. At present, NOWS has commonly used assessment and treatment protocols, but new protocols have questioned old practices. However, because of limited access to opioid use disorder (OUD) treatment and socioeconomic factors, many pregnant (and postpartum) women with OUD do not receive treatment. The pathophysiology of NOWS is not completely understood, although limited research studies have been conducted in humans and animals to better understand its etiology. Moreover, there is evidence that epigenetic and genetic factors play a role in the development of NOWS, but further study is needed. Animal models have suggested that there are deleterious effects of in utero opioid exposure later in life. Clinical research has revealed the harmful long-term sequelae of NOWS, with respect to cognitive function and childhood development. Many psychiatric disorders begin during adolescence, so as infants born with NOWS approach adolescence, additional clinical and molecular studies are warranted to identify biologic and psychosocial risk factors and long-term effects of NOWS. Additionally, access to specialized OUD treatment for pregnant women must be more readily available in the United States, especially in rural areas.


Asunto(s)
Analgésicos Opioides/efectos adversos , Síndrome de Abstinencia Neonatal/etiología , Trastornos Relacionados con Opioides/etiología , Efectos Tardíos de la Exposición Prenatal/etiología , Femenino , Humanos , Recién Nacido , Modelos Animales , Síndrome de Abstinencia Neonatal/epidemiología , Tratamiento de Sustitución de Opiáceos/métodos , Epidemia de Opioides , Trastornos Relacionados con Opioides/epidemiología , Embarazo
19.
G3 (Bethesda) ; 10(5): 1647-1655, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132168

RESUMEN

Long interspersed element-1 retrotransposons (LINE-1 or L1) are ∼6 kb mobile DNA elements implicated in the origins of many Mendelian and complex diseases. The actively retrotransposing L1s are mostly limited to the L1 human specific (L1Hs) transcriptional active (Ta) subfamily. In this manuscript, we present REBELseq as a method for the construction of Ta subfamily L1Hs-enriched next-generation sequencing libraries and bioinformatic identification. REBELseq was performed on DNA isolated from NeuN+ neuronal nuclei from postmortem brain samples of 177 individuals and empirically-driven bioinformatic and experimental cutoffs were established. Putative L1Hs insertions passing bioinformatics cutoffs were experimentally validated. REBELseq reliably identified both known and novel Ta subfamily L1Hs insertions distributed throughout the genome. Differences in the proportion of individuals possessing a given reference or non-reference retrotransposon insertion were identified. We conclude that REBELseq is an unbiased, whole genome approach to the amplification and detection of Ta subfamily L1Hs retrotransposons.


Asunto(s)
Genoma Humano , Elementos de Nucleótido Esparcido Largo , Enzimas de Restricción del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Retroelementos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...